scholarly journals miR-8b is involved in brain and eye regeneration of Dugesia japonica in head regeneration

Biology Open ◽  
2021 ◽  
Vol 10 (6) ◽  
Author(s):  
Hongjin Liu ◽  
Qian Song ◽  
Hui Zhen ◽  
Hongkuan Deng ◽  
Bosheng Zhao ◽  
...  

ABSTRACT MicroRNAs (miRNAs) are a class of evolutionarily conserved small non-coding RNAs that regulate gene expression at the translation level in cell growth, proliferation and differentiation. In addition, some types of miRNAs have been proven to be key modulators of both CNS development and plasticity, such as let-7, miR-9 and miR-124. In this research, we found miR-8b acts as an important regulator involved in brain and eyespot regeneration in Dugesia japonica. miR-8b was highly conserved among species and was abundantly expressed in central nervous system. Here, we detected the expression dynamics of miR-8b by qPCR during the head regeneration of D. japonica. Knockdown miR-8b by anti-MIRs method caused severe defects of eyes and CNS. Our study revealed the evolutionary conserved role of miR-8b in the planarian regeneration process, and further provided more research ideas and available information for planarian miRNAs.

2021 ◽  
Vol 10 (18) ◽  
pp. 4206
Author(s):  
Pablo Pérez-Moreno ◽  
Ismael Riquelme ◽  
Priscilla Brebi ◽  
Juan Carlos Roa

Long non-coding RNAs are sequences longer than 200 nucleotides that are involved in different normal and abnormal biological processes exerting their effect on proliferation and differentiation, among other cell features. Functionally, lncRNAs can regulate gene expression within the cells by acting at transcriptional, post-transcriptional, translational, or post-translational levels. However, in pathological conditions such as cancer, the expression of these molecules is deregulated, becoming elements that can help in the acquisition of tumoral characteristics in the cells that trigger carcinogenesis and cancer progression. Specifically, in gallbladder cancer (GBC), recent publications have shown that lncRNAs participate in the acquisition of an aggressive phenotype in cancer cells, allowing them to acquire increased malignant capacities such as chemotherapy resistance or metastasis, inducing a worse survival in these patients. Furthermore, lncRNAs are useful as prognostic and diagnostic biomarkers since they have been shown to be differentially expressed in tumor tissues and serum of individuals with GBC. Therefore, this review will address different lncRNAs that could be promoting malignant phenotypic characteristics in GBC cells and lncRNAs that may be useful as markers due to their capability to predict a poor prognosis in GBC patients.


2019 ◽  
Author(s):  
Rui Ding ◽  
ZhengTao Gu ◽  
ChangSheng Yang ◽  
CaiQiang Huang ◽  
QingChu Li ◽  
...  

Abstract BackgroundLong non-coding RNAs (LncRNAs) have been found to regulate innumerable diseases, yet the role of lncRNA MEG3 in osteoporosis (OP) has rarely been discussed. Here, we intend to probe into the mechanism of MEG3 on OP development by modulating microRNA-214 (miR-214) and thioredoxin-interacting protein (TXNIP)MethodsRat models of OP were established. MEG3, miR-214, and TXNIP mRNA expression in rat femoral tissues was detected, along with TXNIP, PCNA, cyclin D1, OCN, RUNX2, Osteolix, OPG, and PANKL protein expression. Ca, P and ALP contents in rat blood samples were also determined. Primary osteoblasts were isolated and cultured. Viability, COL-I, COL-II and COL-Χ contents, ALP content and activity, and mineralized nodule area of rat osteoblasts in each group were further detected.ResultsMEG3 and TXNIP were overexpressed while miR-214 was underexpressed in femoral tissues of OP rats. MEG3 silencing and miR-214 overexpression increased BMD, BV/TV, Tb.N, Tb.Th, the number of osteoblasts, collagen area and OPG expression, and downregulated PANKL of femoral tissues in OP rats. MEG3 silencing and miR-214 overexpression elevated Ca and P contents and reduced ALP content in OP rats’ blood, elevated viability, differentiation ability, COL-I and COL-Χ contents and ALP activity, and abated COL-II content of osteoblasts. MEG3 specifically bound to miR-214 to regulate TXNIP.ConclusionCollectively, we demonstrated that MEG3 silencing and miR-214 overexpression promote proliferation and differentiation of osteoblasts in OP by downregulating TXNIP, which further improves OP.


2020 ◽  
Vol 21 (23) ◽  
pp. 8887 ◽  
Author(s):  
Massimo De Martinis ◽  
Lia Ginaldi ◽  
Alessandro Allegra ◽  
Maria Maddalena Sirufo ◽  
Giovanni Pioggia ◽  
...  

Hundreds of trillions of bacteria are present in the human body in a mutually beneficial symbiotic relationship with the host. A stable dynamic equilibrium exists in healthy individuals between the microbiota, host organism, and environment. Imbalances of the intestinal microbiota contribute to the determinism of various diseases. Recent research suggests that the microbiota is also involved in the regulation of the bone metabolism, and its alteration may induce osteoporosis. Due to modern molecular biotechnology, various mechanisms regulating the relationship between bone and microbiota are emerging. Understanding the role of microbiota imbalances in the development of osteoporosis is essential for the development of potential osteoporosis prevention and treatment strategies through microbiota targeting. A relevant complementary mechanism could be also constituted by the permanent relationships occurring between microbiota and microRNAs (miRNAs). miRNAs are a set of small non-coding RNAs able to regulate gene expression. In this review, we recapitulate the physiological and pathological meanings of the microbiota on osteoporosis onset by governing miRNA production. An improved comprehension of the relations between microbiota and miRNAs could furnish novel markers for the identification and monitoring of osteoporosis, and this appears to be an encouraging method for antagomir-guided tactics as therapeutic agents.


2019 ◽  
Vol 84 (6) ◽  
pp. 233-239
Author(s):  
Xu Hui ◽  
Hisham Al-Ward ◽  
Fahmi Shaher ◽  
Chun-Yang Liu ◽  
Ning Liu

<b><i>Background:</i></b> MicroRNAs (miRNAs) represent a group of non-coding RNAs measuring 19–23 nucleotides in length and are recognized as powerful molecules that regulate gene expression in eukaryotic cells. miRNAs stimulate the post-transcriptional regulation of gene expression via direct or indirect mechanisms. <b><i>Summary:</i></b> miR-210 is highly upregulated in cells under hypoxia, thereby revealing its significance to cell endurance. Induction of this mRNA expression is an important feature of the cellular low-oxygen response and the most consistent and vigorous target of HIF. <b><i>Key Message:</i></b> miR-210 is involved in many cellular functions under the effect of HIF-1α, including the cell cycle, DNA repair, immunity and inflammation, angiogenesis, metabolism, and macrophage regulation. It also plays an important regulatory role in T-cell differentiation and stimulation.


MicroRNA ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Ling Lin ◽  
Kebin Hu

: MicroRNAs (miRNAs) are small non-coding RNAs (19~25 nucleotides) that regulate gene expression at a post-transcriptional level through repression of mRNA translation or mRNA decay. miR-147, which was initially discovered in mouse spleen and macrophages, has been shown to correlate with coronary atherogenesis and inflammatory bowel disease and modulate macrophage functions and inflammation through TLR-4. The altered miR-147 level has been shown in various human diseases, including infectious disease, cancer, cardiovascular disease, a neurodegenerative disorder, etc. This review will focus on the current understanding regarding the role of miR-147 in inflammation and diseases.


2020 ◽  
Author(s):  
Flaria El-Khoury ◽  
Jérôme Bignon ◽  
Jean-René Martin

AbstractSmall nucleolar RNAs (snoRNAs) are non-coding RNAs conserved from archeobacteria to mammals. In humans, various snoRNAs have been associated with pathologies as well as with cancer. Recently in Drosophila, a new snoRNA named jouvence has been involved in lifespan. Since snoRNAs are well conserved through evolution, both structurally and functionally, jouvence orthologue has been identified in human, allowing hypothesizing that jouvence could display a similar function (increasing healthy lifespan) in human. Here, we report the characterization of the human snoRNA-jouvence, which was not yet annotated in the genome. We show, both in stably cancerous cell lines and in primary cells, that its overexpression stimulates the cell proliferation. In contrast, its knockdown, by siRNA leads to an opposite phenotype, a decrease in cell proliferation. Transcriptomic analysis reveals that overexpression of jouvence leads to a dedifferentiation signature of the cells, a cellular effect comparable to rejuvenation. Inversely, the knockdown of jouvence leads to a decrease of genes involved in ribosomes biogenesis and spliceosome in agreement with the canonical role of a H/ACA box snoRNA. In this context, jouvence could represent a now tool to fight against the deleterious effect of aging, as well as a new target in cancer therapy.


Author(s):  
Wenjun Wang ◽  
Yuan Yu ◽  
Hongbo Liu ◽  
Hanxue Zheng ◽  
Liyuan Jia ◽  
...  

Protein glycosylation is an important posttranslational modification that plays a crucial role in cellular function. However, its biological roles in tissue regeneration remain interesting and primarily ambiguous. In this study, we profiled protein glycosylation during head regeneration in planarian Dugesia japonica using a lectin microarray. We found that 6 kinds of lectins showed increased signals and 16 kinds showed decreased signals. Interestingly, we found that protein core fucosylation, manifested by Lens culinaris agglutinin (LCA) staining, was significantly upregulated during planarian head regeneration. Lectin histochemistry indicated that the LCA signal was intensified within the wound and blastemal areas. Furthermore, we found that treatment with a fucosylation inhibitor, 2F-peracetyl-fucose, significantly retarded planarian head regeneration, while supplement with L-fucose could improve DjFut8 expression and stimulate planarian head regeneration. In addition, 53 glycoproteins that bound to LCA were selectively isolated by LCA-magnetic particle conjugates and identified by LC-MS/MS, including the neoblast markers DjpiwiA, DjpiwiB, DjvlgA, and DjvlgB. Overall, our study provides direct evidence for the involvement of protein core fucosylation in planarian regeneration.


2020 ◽  
Vol 9 (2) ◽  
pp. 86-91
Author(s):  
Mahta Moraghebi ◽  
Milad Rafat ◽  
Pegah Mousavi ◽  
Kianoosh Malekzadeh

MicroRNAs (miRNAs) constitute a large family of small non-coding RNAs which regulate gene expression at the surface following transcription. They are widely involved in many physiological and pathological processes including polycystic ovarian syndrome (PCOS). PCOS is an endocrine disorder in women. Currently, there is no comprehensive information about the role of miRNAs in PCOS. Thus, this paper has attempted to collate studies on miRNAs in order to determine important changes in their miRNA expression profile in the total blood, serum, plasma, follicular fluid, and granulosa cells in PCOS patients alongside the genes which are targeted for regulation by these miRNAs. This study presents a new approach for using miRNAs and their target genes for diagnosing and treating PCOS.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Di Xiao ◽  
Ruiye Bi ◽  
Xianwen Liu ◽  
Jie Mei ◽  
Nan Jiang ◽  
...  

Abstract Notch signaling is involved in the early onset of osteoarthritis. The aim of this study was to investigate the role of Notch signaling changes during proliferation and differentiation of chondrocyte, and to testify the mechanism of MMP-13 regulation by Notch and Runx2 expression changes during osteoarthritis. In this study, Chondrocytes were isolated from rat knee cartilages. Notch signaling was activated/inhibited by Jagged-1/DAPT. Proliferative capacity of Chondrocytes was analyzed by CCK-8 staining and EdU labeling. ColX, Runx2 and MMP-13 expressions were analyzed as cell differentiation makers. Then, Runx2 gene expression was interfered using lentivirus transfection (RNAi) and was over-expressed by plasmids transfected siRNA in chondrocytes, and MMP-13 expression was analyzed after Jagged-1/DAPT treatment. In vivo, an intra-articular injection of shRunx2 lentivirus followed with Jagged1/DAPT treatments was performed in rats. MMP-13 expression in articular cartilage was detected by immunohistochemistry. Finally, MMP-13 expression changes were analyzed in chondrocytes under IL-1β stimulation. Our findings showed that, CCK-8 staining and EdU labeling revealed suppression of cell proliferation by Notch signaling activation after Jagged-1 treatment in chondrocytes. Promoted differentiation was also observed, characterized by increased expressions of Col X, MMP-13 and Runx2. Meanwhile, Sox9, aggrecan and Col II expressions were down-regulated. The opposite results were observed in Notch signaling inhibited cells by DAPT treatment. In addition, Runx2 RNAi significantly attenuated the ‘regulatory sensitivity’ of Notch signaling on MMP-13 expression both in vitro and in vivo. However, we found there wasn’t significant changes of this ‘regulatory sensitivity’ of Notch signaling after Runx2 over-expression. Under IL-1β circumstance, MMP-13 expression could be reduced by both DAPT treatment and Runx2 RNAi, while Runx2 interference also attenuated the ‘regulatory sensitivity’ of Notch in MMP-13 under IL-1β stimulation. In conclusion, Notch signaling is an important regulator on rat chondrocyte proliferation and differentiation, and this regulatory effect was partially mediated by proper Runx2 expression under both normal and IL-1β circumstances. In the meanwhile, DAPT treatment could effectively suppress expression of MMP-13 stimulated by IL-1 β.


Cancers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1004 ◽  
Author(s):  
Joana M. O. Santos ◽  
Sara Peixoto da Silva ◽  
Rui M. Gil da Costa ◽  
Rui Medeiros

Cancer cachexia or wasting is a paraneoplastic syndrome characterized by systemic inflammation and an involuntary loss of body mass that cannot be reversed by normal nutritional support. This syndrome affects 50%–80% of cancer patients, depending on the tumor type and patient characteristics, and it is responsible for up to 20% of cancer deaths. MicroRNAs are a class of non-coding RNAs (ncRNAs) with 19 to 24 nucleotides in length of which the function is to regulate gene expression. In the last years, microRNAs and other ncRNAs have been demonstrated to have a crucial role in the pathogenesis of several diseases and clinical potential. Recently, ncRNAs have begun to be associated with cancer cachexia by modulating essential functions like the turnover of skeletal muscle and adipose tissue. Additionally, circulating microRNAs have been suggested as potential biomarkers for patients at risk of developing cancer cachexia. In this review article, we present recent data concerning the role of microRNAs and other ncRNAs in cancer cachexia pathogenesis and their possible clinical relevance.


Sign in / Sign up

Export Citation Format

Share Document