scholarly journals The Emerging Role of MicroRNAs and Other Non-Coding RNAs in Cancer Cachexia

Cancers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1004 ◽  
Author(s):  
Joana M. O. Santos ◽  
Sara Peixoto da Silva ◽  
Rui M. Gil da Costa ◽  
Rui Medeiros

Cancer cachexia or wasting is a paraneoplastic syndrome characterized by systemic inflammation and an involuntary loss of body mass that cannot be reversed by normal nutritional support. This syndrome affects 50%–80% of cancer patients, depending on the tumor type and patient characteristics, and it is responsible for up to 20% of cancer deaths. MicroRNAs are a class of non-coding RNAs (ncRNAs) with 19 to 24 nucleotides in length of which the function is to regulate gene expression. In the last years, microRNAs and other ncRNAs have been demonstrated to have a crucial role in the pathogenesis of several diseases and clinical potential. Recently, ncRNAs have begun to be associated with cancer cachexia by modulating essential functions like the turnover of skeletal muscle and adipose tissue. Additionally, circulating microRNAs have been suggested as potential biomarkers for patients at risk of developing cancer cachexia. In this review article, we present recent data concerning the role of microRNAs and other ncRNAs in cancer cachexia pathogenesis and their possible clinical relevance.

2014 ◽  
Vol 35 (12) ◽  
pp. 2723-2730 ◽  
Author(s):  
Mulong Du ◽  
Sang Liu ◽  
Dongying Gu ◽  
Qiaoyan Wang ◽  
Lingjun Zhu ◽  
...  

2020 ◽  
Vol 21 (23) ◽  
pp. 8887 ◽  
Author(s):  
Massimo De Martinis ◽  
Lia Ginaldi ◽  
Alessandro Allegra ◽  
Maria Maddalena Sirufo ◽  
Giovanni Pioggia ◽  
...  

Hundreds of trillions of bacteria are present in the human body in a mutually beneficial symbiotic relationship with the host. A stable dynamic equilibrium exists in healthy individuals between the microbiota, host organism, and environment. Imbalances of the intestinal microbiota contribute to the determinism of various diseases. Recent research suggests that the microbiota is also involved in the regulation of the bone metabolism, and its alteration may induce osteoporosis. Due to modern molecular biotechnology, various mechanisms regulating the relationship between bone and microbiota are emerging. Understanding the role of microbiota imbalances in the development of osteoporosis is essential for the development of potential osteoporosis prevention and treatment strategies through microbiota targeting. A relevant complementary mechanism could be also constituted by the permanent relationships occurring between microbiota and microRNAs (miRNAs). miRNAs are a set of small non-coding RNAs able to regulate gene expression. In this review, we recapitulate the physiological and pathological meanings of the microbiota on osteoporosis onset by governing miRNA production. An improved comprehension of the relations between microbiota and miRNAs could furnish novel markers for the identification and monitoring of osteoporosis, and this appears to be an encouraging method for antagomir-guided tactics as therapeutic agents.


2019 ◽  
Vol 84 (6) ◽  
pp. 233-239
Author(s):  
Xu Hui ◽  
Hisham Al-Ward ◽  
Fahmi Shaher ◽  
Chun-Yang Liu ◽  
Ning Liu

<b><i>Background:</i></b> MicroRNAs (miRNAs) represent a group of non-coding RNAs measuring 19–23 nucleotides in length and are recognized as powerful molecules that regulate gene expression in eukaryotic cells. miRNAs stimulate the post-transcriptional regulation of gene expression via direct or indirect mechanisms. <b><i>Summary:</i></b> miR-210 is highly upregulated in cells under hypoxia, thereby revealing its significance to cell endurance. Induction of this mRNA expression is an important feature of the cellular low-oxygen response and the most consistent and vigorous target of HIF. <b><i>Key Message:</i></b> miR-210 is involved in many cellular functions under the effect of HIF-1α, including the cell cycle, DNA repair, immunity and inflammation, angiogenesis, metabolism, and macrophage regulation. It also plays an important regulatory role in T-cell differentiation and stimulation.


MicroRNA ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Ling Lin ◽  
Kebin Hu

: MicroRNAs (miRNAs) are small non-coding RNAs (19~25 nucleotides) that regulate gene expression at a post-transcriptional level through repression of mRNA translation or mRNA decay. miR-147, which was initially discovered in mouse spleen and macrophages, has been shown to correlate with coronary atherogenesis and inflammatory bowel disease and modulate macrophage functions and inflammation through TLR-4. The altered miR-147 level has been shown in various human diseases, including infectious disease, cancer, cardiovascular disease, a neurodegenerative disorder, etc. This review will focus on the current understanding regarding the role of miR-147 in inflammation and diseases.


2020 ◽  
Vol 9 (2) ◽  
pp. 86-91
Author(s):  
Mahta Moraghebi ◽  
Milad Rafat ◽  
Pegah Mousavi ◽  
Kianoosh Malekzadeh

MicroRNAs (miRNAs) constitute a large family of small non-coding RNAs which regulate gene expression at the surface following transcription. They are widely involved in many physiological and pathological processes including polycystic ovarian syndrome (PCOS). PCOS is an endocrine disorder in women. Currently, there is no comprehensive information about the role of miRNAs in PCOS. Thus, this paper has attempted to collate studies on miRNAs in order to determine important changes in their miRNA expression profile in the total blood, serum, plasma, follicular fluid, and granulosa cells in PCOS patients alongside the genes which are targeted for regulation by these miRNAs. This study presents a new approach for using miRNAs and their target genes for diagnosing and treating PCOS.


2020 ◽  
Vol 10 ◽  
Author(s):  
Gioacchino P. Marceca ◽  
Giovanni Nigita ◽  
Federica Calore ◽  
Carlo M. Croce

Cancer-associated cachexia is a heterogeneous, multifactorial syndrome characterized by systemic inflammation, unintentional weight loss, and profound alteration in body composition. The main feature of cancer cachexia is represented by the loss of skeletal muscle tissue, which may or may not be accompanied by significant adipose tissue wasting. Such phenotypic alteration occurs as the result of concomitant increased myofibril breakdown and reduced muscle protein synthesis, actively contributing to fatigue, worsening of quality of life, and refractoriness to chemotherapy. According to the classical view, this condition is primarily triggered by interactions between specific tumor-induced pro-inflammatory cytokines and their cognate receptors expressed on the myocyte membrane. This causes a shift in gene expression of muscle cells, eventually leading to a pronounced catabolic condition and cell death. More recent studies, however, have shown the involvement of regulatory non-coding RNAs in the outbreak of cancer cachexia. In particular, the role exerted by microRNAs is being widely addressed, and several mechanistic studies are in progress. In this review, we discuss the most recent findings concerning the role of microRNAs in triggering or exacerbating muscle wasting in cancer cachexia, while mentioning about possible roles played by long non-coding RNAs and ADAR-mediated miRNA modifications.


Biology Open ◽  
2021 ◽  
Vol 10 (6) ◽  
Author(s):  
Hongjin Liu ◽  
Qian Song ◽  
Hui Zhen ◽  
Hongkuan Deng ◽  
Bosheng Zhao ◽  
...  

ABSTRACT MicroRNAs (miRNAs) are a class of evolutionarily conserved small non-coding RNAs that regulate gene expression at the translation level in cell growth, proliferation and differentiation. In addition, some types of miRNAs have been proven to be key modulators of both CNS development and plasticity, such as let-7, miR-9 and miR-124. In this research, we found miR-8b acts as an important regulator involved in brain and eyespot regeneration in Dugesia japonica. miR-8b was highly conserved among species and was abundantly expressed in central nervous system. Here, we detected the expression dynamics of miR-8b by qPCR during the head regeneration of D. japonica. Knockdown miR-8b by anti-MIRs method caused severe defects of eyes and CNS. Our study revealed the evolutionary conserved role of miR-8b in the planarian regeneration process, and further provided more research ideas and available information for planarian miRNAs.


2021 ◽  
Vol 12 ◽  
Author(s):  
Cecilia Catellani ◽  
Gloria Ravegnini ◽  
Chiara Sartori ◽  
Sabrina Angelini ◽  
Maria E. Street

Growth hormone (GH) and the insulin-like growth factor (IGF) system are involved in many biological processes and have growth-promoting actions regulating cell proliferation, differentiation, apoptosis and angiogenesis. A recent chapter in epigenetics is represented by microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) which regulate gene expression. Dysregulated miRNAs and lncRNAs have been associated with several diseases including cancer. Herein we report the most recent findings concerning miRNAs and lncRNAs regulating GH and the IGF system in the context of pituitary adenomas, osteosarcoma and colorectal cancer, shedding light on new possible therapeutic targets. Pituitary adenomas are increasingly common intracranial tumors and somatotroph adenomas determine supra-physiological GH secretion and cause acromegaly. Osteosarcoma is the most frequent bone tumor in children and adolescents and was reported in adults who were treated with GH in childhood. Colorectal cancer is the third cancer in the world and has a higher prevalence in acromegalic patients.


2021 ◽  
Vol 7 (1) ◽  
pp. 16
Author(s):  
Didem Karakas ◽  
Bulent Ozpolat

Long non-coding RNAs (lncRNAs), a group of non-protein coding RNAs with lengths of more than 200 nucleotides, exert their effects by binding to DNA, mRNA, microRNA, and proteins and regulate gene expression at the transcriptional, post-transcriptional, translational, and post-translational levels. Depending on cellular location, lncRNAs are involved in a wide range of cellular functions, including chromatin modification, transcriptional activation, transcriptional interference, scaffolding and regulation of translational machinery. This review highlights recent studies on lncRNAs in the regulation of protein translation by modulating the translational factors (i.e, eIF4E, eIF4G, eIF4A, 4E-BP1, eEF5A) and signaling pathways involved in this process as wells as their potential roles as tumor suppressors or tumor promoters.


2017 ◽  
Vol 131 (15) ◽  
pp. 1923-1940 ◽  
Author(s):  
Steven Horsburgh ◽  
Nicola Fullard ◽  
Mathilde Roger ◽  
Abbie Degnan ◽  
Stephen Todryk ◽  
...  

The skin is the largest organ of the integumentary system and possesses a vast number of functions. Due to the distinct layers of the skin and the variety of cells which populate each, a tightly regulated network of molecular signals control development and regeneration, whether due to programmed cell termination or injury. MicroRNAs (miRs) are a relatively recent discovery; they are a class of small non-coding RNAs which possess a multitude of biological functions due to their ability to regulate gene expression via post-transcriptional gene silencing. Of interest, is that a plethora of data demonstrates that a number of miRs are highly expressed within the skin, and are evidently key regulators of numerous vital processes to maintain non-aberrant functioning. Recently, miRs have been targeted as therapeutic interventions due to the ability of synthetic ‘antagomiRs’ to down-regulate abnormal miR expression, thereby potentiating wound healing and attenuating fibrotic processes which can contribute to disease such as systemic sclerosis (SSc). This review will provide an introduction to the structure and function of the skin and miR biogenesis, before summarizing the literature pertaining to the role of miRs. Finally, miR therapies will also be discussed, highlighting important future areas of research.


Sign in / Sign up

Export Citation Format

Share Document