Zebrafish hox genes: genomic organization and modified colinear expression patterns in the trunk

Development ◽  
1998 ◽  
Vol 125 (3) ◽  
pp. 407-420 ◽  
Author(s):  
V.E. Prince ◽  
L. Joly ◽  
M. Ekker ◽  
R.K. Ho

The Hox genes are implicated in conferring regional identity to the anteroposterior axis of the developing embryo. We have characterized the organization and expression of hox genes in the teleost zebrafish (Danio rerio), and compared our findings with those made for the tetrapod vertebrates. We have isolated 32 zebrafish hox genes, primarily via 3′RACE-PCR, and analyzed their linkage relationships using somatic cell hybrids. We find that in comparison to the tetrapods, zebrafish has several additional hox genes, both within and beyond the expected 4 hox clusters (A-D). For example, we have isolated a member of hox paralogue group 8 lying on the hoxa cluster, and a member of hox paralogue group 10 lying on the b cluster, no equivalent genes have been reported for mouse or human. Beyond the 4 clusters (A-D) we have isolated a further 3 hox genes (the hoxx and y genes), which according to their sequence homologies lie in paralogue groups 4, 6, and 9. The hoxx4 and hoxx9 genes occur on the same set of hybrid chromosomes, hinting at the possibility of an additional hox cluster for the zebrafish. Similar to their tetrapod counterparts, zebrafish hox genes (including those with no direct tetrapod equivalent) demonstrate colinear expression along the anteroposterior (AP) axis of the embryo. However, in comparison to the tetrapods, anterior hox expression limits are compacted over a short AP region; some members of adjacent paralogue groups have equivalent limits. It has been proposed that during vertebrate evolution, the anterior limits of Hox gene expression have become dispersed along the AP axis allowing the genes to take on novel patterning roles and thus leading to increased axial complexity. In the teleost zebrafish, axial organization is relatively simple in comparison to that of the tetrapod vertebrates; this may be reflected by the less dispersed expression domains of the zebrafish hox genes.

Development ◽  
2021 ◽  
Vol 148 (11) ◽  
Author(s):  
Kazuya Yamada ◽  
Akiteru Maeno ◽  
Soh Araki ◽  
Morimichi Kikuchi ◽  
Masato Suzuki ◽  
...  

ABSTRACT Vertebrate Hox clusters are comprised of multiple Hox genes that control morphology and developmental timing along multiple body axes. Although results of genetic analyses using Hox-knockout mice have been accumulating, genetic studies in other vertebrates have not been sufficient for functional comparisons of vertebrate Hox genes. In this study, we isolated all of the seven hox cluster loss-of-function alleles in zebrafish using the CRISPR-Cas9 system. Comprehensive analysis of the embryonic phenotype and X-ray micro-computed tomography scan analysis of adult fish revealed several species-specific functional contributions of homologous Hox clusters along the appendicular axis, whereas important shared general principles were also confirmed, as exemplified by serial anterior vertebral transformations along the main body axis, observed in fish for the first time. Our results provide insights into discrete sub/neofunctionalization of vertebrate Hox clusters after quadruplication of the ancient Hox cluster. This set of seven complete hox cluster loss-of-function alleles provide a formidable resource for future developmental genetic analysis of the Hox patterning system in zebrafish.


Development ◽  
2000 ◽  
Vol 127 (21) ◽  
pp. 4631-4643 ◽  
Author(s):  
C. Arenas-Mena ◽  
A.R. Cameron ◽  
E.H. Davidson

The Hox cluster of the sea urchin Strongylocentrous purpuratus contains ten genes in a 500 kb span of the genome. Only two of these genes are expressed during embryogenesis, while all of eight genes tested are expressed during development of the adult body plan in the larval stage. We report the spatial expression during larval development of the five ‘posterior’ genes of the cluster: SpHox7, SpHox8, SpHox9/10, SpHox11/13a and SpHox11/13b. The five genes exhibit a dynamic, largely mesodermal program of expression. Only SpHox7 displays extensive expression within the pentameral rudiment itself. A spatially sequential and colinear arrangement of expression domains is found in the somatocoels, the paired posterior mesodermal structures that will become the adult perivisceral coeloms. No such sequential expression pattern is observed in endodermal, epidermal or neural tissues of either the larva or the presumptive juvenile sea urchin. The spatial expression patterns of the Hox genes illuminate the evolutionary process by which the pentameral echinoderm body plan emerged from a bilateral ancestor.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4614-4614
Author(s):  
Karolina Kramarzova ◽  
Harry Drabkin ◽  
Jan Zuna ◽  
Zuzana Zemanova ◽  
Jan Stary ◽  
...  

Abstract Abstract 4614 Introduction: The homeodomain genes (HOX genes) encode a family of highly conserved transcription factors that play fundamental roles during embryogenesis. HOX genes are also important regulators in hematopoiesis. In leukemogenesis, dysregulated expression of HOX genes has been found. Despite many correlative studies, the mechanism of establishment of leukemia specific HOX gene expression patterns in hematopoietic cells remains to be elucidated. Histone methylases and demethylases (Trithorax (TrxG), JMJD3 and Polycomb-group (PcG) genes) are chromatin modifiers regulating global gene expression through chromatin remodeling in many biological processes. PcG genes can also interact with DNA methyltransferases and alter their activity. Our previously published data showed that HOX gene expression correlated with the level of DNA methylation. These data together with the stabilizing function of PcG genes on HOX expression in embryogenesis suggest the involvement of histone modifiers in the regulation of hematopoietic HOX gene expression. Methods: To investigate the regulation of HOX expression in leukemogenesis, we determined mRNA levels of the representative groups of HOX genes (HOXA, HOXB, CDX1/2), PcG genes (EZH2, BMI1), MLL and demethylases (JMJD3, UTX) in samples of childhood AML (N=41) and healthy controls (N=5). We also studied the dynamics of HOX genes and chromatin modifiers in preleukemic and diagnostic samples of a patient who underwent secondary leukemia. Quantification of gene expression was performed using qPCR assays as previously described. Results: Expression patterns for the majority of HOX genes differed significantly among morphologically defined subgroups of AML with AML M3 having the lowest expression of all HOX genes. Children with AML M5 expressed HOXA cluster at the highest level, while HOXB genes were highly expressed in M5 and M4 subtype. Subgroups defined according to molecular genetics showed similar results. The presence of PML/RARa fusion gene was associated with very low expression of all HOX genes whereas MLL+ and CBFb/MYH11+ patients expressed higher levels of HOXA genes. We also assessed the prognostic significance of particular HOX genes and found that the HOXA cluster was expressed at very low levels in standard risk cases compared to the high risk group (P<0.0001 for most HOXA genes), which is in concordance with previously published results in adult AML (Andreeff et al. 2008). Determination of mRNA levels of histone modifiers showed an overall level of high expression across various AML subgroups. Nevertheless, some were uniformly expressed in AML patients (EZH2, MLL), while others were differentially expressed with the lowest level in the M3 subtype (BMI1, JMJD3). Interestingly, we found a correlation between HOX gene expression and levels of JMJD3, which was mainly evident in CBFb-MYH11+, PML-RARa+ and AML1-ETO+ patients. JMJD3 levels were also correlated with another demethylase, UTX. A positive trend between HOX gene expression and JMJD3 was identified in healthy controls as well. Analysis of the sample from preleukemic period of the patient with secondary leukemia (secALL with MLL translocation) allowed us to study the dynamics of HOX gene expression during leukemogenesis. The diagnostic secALL sample showed an expression pattern of HOX genes typical for MLL+ leukemia. However, the profile of HOX genes in preleukemic sample (16 months before secALL) resembled the pattern found in healthy controls. Nonetheless, 90% of these seemingly normal hematopoietic cells were confirmed by FISH analysis to carry MLL/FOXO3A. Thus, even though MLL is a well known regulator of HOX genes, there must be an additional mechanism, that establishes the expression pattern of HOX genes typical in MLL+ patients. Conclusion: In summary, we identified different expression patterns of HOX genes in particular subtypes of childhood AML that significantly correlated with prognosis. Our results indicate that histone modifiers JMJD3 and UTX might be involved in the regulation of HOX gene expression. Moreover, these data also suggest that histone demethylases could cooperate with specific genetic aberrations implicated in chromatin remodeling on regulation of HOX genes. The analysis of secondary leukemia suggests that additional alterations are required to deregulate HOX expression in at least some MLL+ patients. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Elena L. Novikova ◽  
Nadezhda I. Bakalenko ◽  
Milana A. Kulakova

AbstractTo date it is becoming more and more obvious that multiple non-coding RNAs, once considered to be transcriptional noise, play a huge role in gene regulation during animal ontogenesis. Hox genes are key regulators of embryonic development, growth and regeneration of all bilaterian animals. It was shown that mammalian Hox loci are transcribed in both directions and noncoding RNAs maintain and control the normal functioning of Hox clusters. We revealed antisense transcripts of most of Hox genes in two lophotrochozoans, errant annelids Alitta virens and Platynereis dumerilii. It is for the first time when non-coding RNAs associated with Hox genes are found in spiralian animals. All these asRNAs can be referred to as natural antisense transcripts (NATs). We analyzed the expression of all detected NATs using sense probes to their Hox mRNAs during larval and postlarval development and regeneration by whole mount in situ hybridization (WMISH). We managed to clone several asRNAs (Avi-antiHox4-1, Avi-antiHox4-2 and Avi-antiHox5) of these annelids and analyzed their expression patterns as well. Our data indicate variable and complicated interplay between sense and antisense Hox transcripts during development and growth of two annelids. The presence of Hox antisense transcription in the representatives of different bilaterian clades (mammals, myriapods and annelids) and similar expression relationships in sense-antisense pairs suggest that this can be the ancestral feature of Hox cluster regulation.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3369-3369
Author(s):  
Harry Drabkin ◽  
Sharvari Gadgil ◽  
Chan Zeng ◽  
Anna Baron ◽  
Olivier Bernard

Abstract HOX genes are frequent targets of chromosomal translocations and retroviral integrations in human and murine acute leukemia, often involving genes at the 5′-end of the HOX clusters. We previously reported that HOX expression patterns in AML were related to prognostic cytogenetic subsets. We also identified a distinct subset of patients with intermediate cytogenetics based on high levels of HOX and FLT3 expression, frequent FLT3 mutations and a low incidence of C/EBPa mutations. Certain cases of T-ALL also have rearrangements of homeodomain genes and some T-ALLs express limited myeloid markers. To further explore the spectrum of homeodomain gene expression, we developed qRT-PCR assays for nearly all clustered HOXA-D genes, selected homeodomain genes on chromosomes often altered in AML, and selected polycomb (Pc) genes, FLT3 and MLL. Altogether, 52 genes were analyzed in 32 AML and T-ALL cell lines. FLT3 expression was confined to a subset of AMLs. HOX11, HOX11L2 and NKX2.5 were expressed only in cases involving rearrangements of these genes. The Pc and MLL genes were uniformly expressed. Among HOX clusters, the frequency of gene expression was HOXA>B>C>D. Genes more highly expressed in the HOXC and D clusters were those at the 5′-ends (e.g., D13, C10). Marked or selective overexpression of individual genes suggests their possible involvement in the disease process, immortalization or differentiation. Examples include EN1 (SUPT1), D13 (MEGA1, B9 (PEER). A hierarchical cluster analysis based on homeodomain genes successfully identified subsets of related cell lines. Thus, the analysis of quantitative HOX expression may provide an important new tool to better understand the biology of acute leukemia.


2021 ◽  
Author(s):  
Teresa Shippy ◽  
Prashant S Hosmani ◽  
Mirella Flores-Gonzalez ◽  
Lukas A Mueller ◽  
Wayne B Hunter ◽  
...  

Hox genes and their cofactors are essential developmental genes that specify regional identity in animals, including insects. A particularly interesting feature of Hox genes is their conserved arrangement in clusters in the same order in which they specify identity along the anterior-posterior axis. Among insects, breaks in the cluster have been reported in a few species, but these seem to be the exception rather than the rule. We have annotated the ten Hox genes of the Asian citrus psyllid, Diaphorina citri, and determined that there is a split in its Hox cluster between the Deformed and Sex combs reduced genes. This is the first time a break at this position has been observed in an insect Hox cluster. We have also annotated the D. citri orthologs of the Hox cofactor genes homothorax, PKNOX and extradenticle. Interestingly, we found an additional copy of extradenticle in D. citri that appears to be a retrogene. Expression data and sequence conservation suggest that the extradenticle retrogene may have retained the original extradenticle function and allowed the parental extradenticle gene to diverge.


2020 ◽  
Vol 27 ◽  
Author(s):  
Ji-Yeon Lee ◽  
Myoung Hee Kim

: HOX genes belong to the highly conserved homeobox superfamily, responsible for the regulation of various cellular processes that control cell homeostasis, from embryogenesis to carcinogenesis. The abnormal expression of HOX genes is observed in various cancers, including breast cancer; they act as oncogenes or as suppressors of cancer, according to context. In this review, we analyze HOX gene expression patterns in breast cancer and examine their relationship, based on the three-dimensional genome structure of the HOX locus. The presence of non-coding RNAs, embedded within the HOX cluster, and the role of these molecules in breast cancer have been reviewed. We further evaluate the characteristic activity of HOX protein in breast cancer and its therapeutic potential.


2005 ◽  
Vol 11 (5) ◽  
pp. 531-537 ◽  
Author(s):  
Wenjun Cheng ◽  
Jinsong Liu ◽  
Hiroyuki Yoshida ◽  
Daniel Rosen ◽  
Honami Naora

Development ◽  
1996 ◽  
Vol 122 (5) ◽  
pp. 1449-1466 ◽  
Author(s):  
C.E. Nelson ◽  
B.A. Morgan ◽  
A.C. Burke ◽  
E. Laufer ◽  
E. DiMambro ◽  
...  

The vertebrate Hox genes have been shown to be important for patterning the primary and secondary axes of the developing vertebrate embryo. The function of these genes along the primary axis of the embryo has been generally interpreted in the context of positional specification and homeotic transformation of axial structures. The way in which these genes are expressed and function during the development of the secondary axes, particularly the limb, is less clear. In order to provide a reference for understanding the role of the Hox genes in limb patterning, we isolated clones of 23 Hox genes expressed during limb development, characterized their expression patterns and analyzed their regulation by the signalling centers which pattern the limb. The expression patterns of the Abd-B-related Hoxa and Hoxd genes have previously been partially characterized; however, our study reveals that these genes are expressed in patterns more dynamic and complex than generally appreciated, only transiently approximating simple, concentric, nested domains. Detailed analysis of these patterns suggests that the expression of each of the Hoxa and Hoxd genes is regulated in up to three independent phases. Each of these phases appears to be associated with the specification and patterning of one of the proximodistal segments of the limb (upper arm, lower arm and hand). Interestingly, in the last of these phases, the expression of the Hoxd genes violates the general rule of spatial and temporal colinearity of Hox gene expression with gene order along the chromosome. In contrast to the Abd-B-related Hoxa and Hoxd genes, which are expressed in both the fore and hind limbs, different sets of Hoxc genes are expressed in the two limbs. There is a correlation between the relative position of these genes along the chromosome and the axial level of the limb bud in which they are expressed. The more 3′ genes are expressed in the fore limb bud while the 5′ genes are expressed in the hind limb bud; intermediate genes are transcribed in both limbs. However, there is no clear correlation between the relative position of the genes along the chromosome and their expression domains within the limb. With the exception of Hoxc-11, which is transcribed in a posterior portion of the hind limb, Hoxc gene expression is restricted to the anterior/proximal portion of the limb bud. Importantly, comparison of the distributions of Hoxc-6 RNA and protein products reveals posttranscriptional regulation of this gene, suggesting that caution must be exercised in interpreting the functional significance of the RNA distribution of any of the vertebrate Hox genes. To understand the genesis of the complex patterns of Hox gene expression in the limb bud, we examined the propagation of Hox gene expression relative to cell proliferation. We find that shifts in Hox gene expression cannot be attributed to passive expansion due to cell proliferation. Rather, phase-specific Hox gene expression patterns appear to result from a context-dependent response of the limb mesoderm to Sonic hedgehog. Sonic hedgehog (the patterning signal from the Zone of Polarizing Activity) is known to be able to activate Hoxd gene expression in the limb. Although we find that Sonic hedgehog is capable of initiating and polarizing Hoxd gene expression during both of the latter two phases of Hox gene expression, the specific patterns induced are not determined by the signal, but depend upon the temporal context of the mesoderm receiving the signal. Misexpression of Sonic hedgehog also reveals that Hoxb-9, which is normally excluded from the posterior mesenchyme of the leg, is negatively regulated by Sonic hedgehog and that Hoxc-11, which is expressed in the posterior portion of the leg, is not affected by Sonic hedgehog and hence is not required to pattern the skeletal elements of the lower leg.


Development ◽  
1999 ◽  
Vol 126 (21) ◽  
pp. 4737-4748 ◽  
Author(s):  
A. Locascio ◽  
F. Aniello ◽  
A. Amoroso ◽  
M. Manzanares ◽  
R. Krumlauf ◽  
...  

Hox genes play a fundamental role in the establishment of chordate body plan, especially in the anteroposterior patterning of the nervous system. Particularly interesting are the anterior groups of Hox genes (Hox1-Hox4) since their expression is coupled to the control of regional identity in the anterior regions of the nervous system, where the highest structural diversity is observed. Ascidians, among chordates, are considered a good model to investigate evolution of Hox gene, organisation, regulation and function. We report here the cloning and the expression pattern of CiHox3, a Ciona intestinalis anterior Hox gene homologous to the paralogy group 3 genes. In situ hybridization at the larva stage revealed that CiHox3 expression was restricted to the visceral ganglion of the central nervous system. The presence of a sharp posterior boundary and the absence of transcript in mesodermal tissues are distinctive features of CiHox3 expression when compared to the paralogy group 3 in other chordates. We have investigated the regulatory elements underlying CiHox3 neural-specific expression and, using transgenic analysis, we were able to isolate an 80 bp enhancer responsible of CiHox3 activation in the central nervous system (CNS). A comparative study between mouse and Ciona Hox3 promoters demonstrated that divergent mechanisms are involved in the regulation of these genes in vertebrates and ascidians.


Sign in / Sign up

Export Citation Format

Share Document