The early epaxial enhancer is essential for the initial expression of the skeletal muscle determination geneMyf5but not for subsequent, multiple phases of somitic myogenesis

Development ◽  
2002 ◽  
Vol 129 (19) ◽  
pp. 4571-4580 ◽  
Author(s):  
Lydia Teboul ◽  
Juliette Hadchouel ◽  
Philippe Daubas ◽  
Dennis Summerbell ◽  
Margaret Buckingham ◽  
...  

Vertebrate myogenesis is controlled by four transcription factors known as the myogenic regulatory factors (MRFs): Myf5, Mrf4, myogenin and MyoD. During mouse development Myf5 is the first MRF to be expressed and it acts by integrating multiple developmental signals to initiate myogenesis. Numerous discrete regulatory elements are involved in the activation and maintenance of Myf5 gene expression in the various muscle precursor populations, reflecting the diversity of the signals that control myogenesis. Here we focus on the enhancer that recapitulates the first phase of Myf5 expression in the epaxial domain of the somite, in order to identify the subset of cells that first transcribes the gene and therefore gain insight into molecular, cellular and anatomical facets of early myogenesis. Deletion of this enhancer from a YAC reporter construct that recapitulates the Myf5 expression pattern demonstrates that this regulatory element is necessary for expression in the early epaxial somite but in no other site of myogenesis. Importantly, Myf5 is subsequently expressed in the epaxial myotome under the control of other elements located far upstream of the gene. Our data suggest that the inductive signals that control Myf5 expression switch rapidly from those that impinge on the early epaxial enhancer to those that impinge on the other enhancers that act later in the epaxial somite, indicating that there are significant changes in either the signalling environment or the responsiveness of the cells along the rostrocaudal axis. We propose that the first phase of Myf5 epaxial expression, driven by the early epaxial enhancer in the dermomyotome, is necessary for early myotome formation, while the subsequent phases are associated with cytodifferentiation within the myotome.

Development ◽  
2001 ◽  
Vol 128 (22) ◽  
pp. 4623-4633 ◽  
Author(s):  
Da-Zhi Wang ◽  
M. Renee Valdez ◽  
John McAnally ◽  
James Richardson ◽  
Eric N. Olson

Members of the MEF2 family of transcription factors are upregulated during skeletal muscle differentiation and cooperate with the MyoD family of myogenic basic helix-loop-helix (bHLH) transcription factors to control the expression of muscle-specific genes. To determine the mechanisms that regulate MEF2 gene expression during skeletal muscle development, we analyzed the mouse Mef2c gene for cis-regulatory elements that direct expression in the skeletal muscle lineage in vivo. We describe a skeletal muscle-specific control region for Mef2c that is sufficient to direct lacZ reporter gene expression in a pattern that recapitulates that of the endogenous Mef2c gene in skeletal muscle during pre- and postnatal development. This control region is a direct target for the binding of myogenic bHLH and MEF2 proteins. Mutagenesis of the Mef2c control region shows that a binding site for myogenic bHLH proteins is essential for expression at all stages of skeletal muscle development, whereas an adjacent MEF2 binding site is required for maintenance but not for initiation of Mef2c transcription. Our findings reveal the existence of a regulatory circuit between these two classes of transcription factors that induces, amplifies and maintains their expression during skeletal muscle development.


2019 ◽  
Author(s):  
Kaia Mattioli ◽  
Winona Oliveros ◽  
Chiara Gerhardinger ◽  
Daniel Andergassen ◽  
Philipp G. Maass ◽  
...  

ABSTRACTGene expression differences between species are driven by both cis and trans effects. Whereas cis effects are caused by genetic variants in close proximity to the target gene, trans effects are due to distal genetic variants that affect diffusible elements such as transcription factors. Previous studies have mostly assessed the impact of cis and trans effects at the gene level. However, how cis and trans effects differentially impact regulatory elements such as enhancers and promoters remains poorly understood. Here, we used massively parallel reporter assays to directly measure cis and trans effects between human and mouse embryonic stem cells at thousands of individual regulatory elements. Our approach revealed that cis effects are widespread across regulatory elements, and the strongest cis effects are associated with the disruption of motifs recognized by strong transcriptional activators. Conversely, we found that trans effects are rare but stronger in enhancers than promoters, and can be attributed to a subset of transcription factors that are differentially expressed between human and mouse. While previous studies have found extensive co-occurrence of cis and trans effects in opposite directions that stabilize gene expression throughout evolution, we find that cis-trans compensation is uncommon within individual regulatory elements. Thus, our results are consistent with a model wherein compensatory cis-trans effects at the gene level are explained by cis and trans effects that separately impact several regulatory elements rather than cis-trans effects that occur simultaneously within a single regulatory element. Together, these results indicate that studying the evolution of individual regulatory elements is pivotal to understand the tempo and mode of gene expression evolution.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Zi Wang ◽  
Pan Wang ◽  
Yanan Li ◽  
Hongling Peng ◽  
Yu Zhu ◽  
...  

AbstractHematopoiesis requires finely tuned regulation of gene expression at each stage of development. The regulation of gene transcription involves not only individual transcription factors (TFs) but also transcription complexes (TCs) composed of transcription factor(s) and multisubunit cofactors. In their normal compositions, TCs orchestrate lineage-specific patterns of gene expression and ensure the production of the correct proportions of individual cell lineages during hematopoiesis. The integration of posttranslational and conformational modifications in the chromatin landscape, nucleosomes, histones and interacting components via the cofactor–TF interplay is critical to optimal TF activity. Mutations or translocations of cofactor genes are expected to alter cofactor–TF interactions, which may be causative for the pathogenesis of various hematologic disorders. Blocking TF oncogenic activity in hematologic disorders through targeting cofactors in aberrant complexes has been an exciting therapeutic strategy. In this review, we summarize the current knowledge regarding the models and functions of cofactor–TF interplay in physiological hematopoiesis and highlight their implications in the etiology of hematological malignancies. This review presents a deep insight into the physiological and pathological implications of transcription machinery in the blood system.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Matthieu Dos Santos ◽  
Stéphanie Backer ◽  
Benjamin Saintpierre ◽  
Brigitte Izac ◽  
Muriel Andrieu ◽  
...  

Abstract Skeletal muscle fibers are large syncytia but it is currently unknown whether gene expression is coordinately regulated in their numerous nuclei. Here we show by snRNA-seq and snATAC-seq that slow, fast, myotendinous and neuromuscular junction myonuclei each have different transcriptional programs, associated with distinct chromatin states and combinations of transcription factors. In adult mice, identified myofiber types predominantly express either a slow or one of the three fast isoforms of Myosin heavy chain (MYH) proteins, while a small number of hybrid fibers can express more than one MYH. By snRNA-seq and FISH, we show that the majority of myonuclei within a myofiber are synchronized, coordinately expressing only one fast Myh isoform with a preferential panel of muscle-specific genes. Importantly, this coordination of expression occurs early during post-natal development and depends on innervation. These findings highlight a previously undefined mechanism of coordination of gene expression in a syncytium.


1990 ◽  
Vol 10 (8) ◽  
pp. 4243-4255 ◽  
Author(s):  
D Gius ◽  
X M Cao ◽  
F J Rauscher ◽  
D R Cohen ◽  
T Curran ◽  
...  

The Fos-Jun complex has been shown to activate transcription through the regulatory element known as the AP-1 binding site. We show that Fos down regulates several immediate-early genes (c-fos, Egr-1, and Egr-2) after mitogenic stimulation. Specifically, we demonstrate that the target for this repression is a sequence of the form CC(A/T)6GG, also known as a CArG box. Whereas Fos bound to the AP-1 site through a domain rich in basic amino acids and associated with Jun via a leucine zipper interaction, mutant Fos proteins lacking these structures were still capable of causing repression. Furthermore, Jun neither enhanced nor inhibited down regulation by Fos. Critical residues required for repression are located within the C-terminal 27 amino acids of c-Fos, since v-Fos and C-terminal truncations of c-Fos did not down regulate. In addition, transfer of 180 c-Fos C-terminal amino acids to Jun conferred upon it the ability to repress. Finally, Fra-1, a Fos-related protein which has striking similarity to Fos in its C-terminal 40 amino acids, also down regulated Egr-1 expression. Thus, Fos is a transcriptional regulator that can activate or repress gene expression by way of two separate functional domains that act on distinct regulatory elements.


Blood ◽  
1995 ◽  
Vol 86 (3) ◽  
pp. 1202-1211 ◽  
Author(s):  
A Bernet ◽  
S Sabatier ◽  
DJ Picketts ◽  
R Ouazana ◽  
F Morle ◽  
...  

Abstract We have examined the role of the major positive upstream regulatory element of the human alpha-globin gene locus (HS-40) in its natural chromosomal context. Using homologous recombination, HS-40 was replaced by a neo marker gene in a mouse erythroleukemia hybrid cell line containing a single copy of human chromosome 16. In clones from which HS-40 had been deleted, human alpha-globin gene expression was severely reduced, although basal levels of alpha 1 and alpha 2-globin mRNA expression representing less than 3% of the level in control cell lines were detected. Deletion of the neo marker gene, by using FLP recombinase/FLP recombinase target system, proved that the phenotype observed was not caused by the regulatory elements of this marker gene. In the targeted clones, deletion of HS-40 apparently does not affect long-range or local chromatin structure at the alpha promoters. Therefore, these results indicate that, in the experimental system used, HS-40 behaves as a strong inducible enhancer of human alpha- globin gene expression.


2019 ◽  
Vol 18 ◽  
pp. 117693511985986 ◽  
Author(s):  
Salam A Assi ◽  
Constanze Bonifer ◽  
Peter N Cockerill

Acute myeloid leukemia (AML) is a highly heterogeneous cancer associated with different patterns of gene expression determined by the nature of their DNA mutations. These mutations mostly act to deregulate gene expression by various mechanisms at the level of the nucleus. By performing genome-wide epigenetic profiling of cis-regulatory elements, we found that AML encompasses different mutation-specific subclasses associated with the rewiring of the gene regulatory networks that drive differentiation into different directions away from normal myeloid development. By integrating epigenetic profiles with gene expression and chromatin conformation data, we defined pathways within gene regulation networks that were differentially rewired within each mutation-specific subclass of AML. This analysis revealed 2 major classes of AML: one class defined by mutations in signaling molecules that activate AP-1 via the mitogen-activated protein (MAP) kinase pathway and a second class defined by mutations within genes encoding transcription factors such as RUNX1/CBFβ and C/EBPα. By identifying specific DNA motifs protected from DNase I digestion at cis-regulatory elements, we were able to infer candidate transcription factors bound to these motifs. These integrated analyses allowed the identification of AML subtype-specific core regulatory networks that are required for AML development and maintenance, which could now be targeted in personalized therapies.


2019 ◽  
Vol 18 (5) ◽  
pp. 290-301 ◽  
Author(s):  
Christa G Toenhake ◽  
Richárd Bártfai

Abstract Malaria parasites are characterized by a complex life cycle that is accompanied by dynamic gene expression patterns. The factors and mechanisms that regulate gene expression in these parasites have been searched for even before the advent of next generation sequencing technologies. Functional genomics approaches have substantially boosted this area of research and have yielded significant insights into the interplay between epigenetic, transcriptional and post-transcriptional mechanisms. Recently, considerable progress has been made in identifying sequence-specific transcription factors and DNA-encoded regulatory elements. Here, we review the insights obtained from these efforts including the characterization of core promoters, the involvement of sequence-specific transcription factors in life cycle progression and the mapping of gene regulatory elements. Furthermore, we discuss recent developments in the field of functional genomics and how they might contribute to further characterization of this complex gene regulatory network.


1999 ◽  
Vol 10 (6) ◽  
pp. 2075-2086 ◽  
Author(s):  
Tejvir S. Khurana ◽  
Alan G. Rosmarin ◽  
Jing Shang ◽  
Thomas O. B. Krag ◽  
Saumya Das ◽  
...  

Utrophin/dystrophin-related protein is the autosomal homologue of the chromosome X-encoded dystrophin protein. In adult skeletal muscle, utrophin is highly enriched at the neuromuscular junction. However, the molecular mechanisms underlying regulation of utrophin gene expression are yet to be defined. Here we demonstrate that the growth factor heregulin increases de novo utrophin transcription in muscle cell cultures. Using mutant reporter constructs of the utrophin promoter, we define the N-box region of the promoter as critical for heregulin-mediated activation. Using this region of the utrophin promoter for DNA affinity purification, immunoblots, in vitro kinase assays, electrophoretic mobility shift assays, and in vitro expression in cultured muscle cells, we demonstrate thatets-related GA-binding protein α/β transcription factors are activators of the utrophin promoter. Taken together, these results suggest that the GA-binding protein α/β complex of transcription factors binds and activates the utrophin promoter in response to heregulin-activated extracellular signal–regulated kinase in muscle cell cultures. These findings suggest methods for achieving utrophin up-regulation in Duchenne’s muscular dystrophy as well as mechanisms by which neurite-derived growth factors such as heregulin may influence the regulation of utrophin gene expression and subsequent enrichment at the neuromuscular junction of skeletal muscle.


2004 ◽  
Vol 379 (1) ◽  
pp. 151-159 ◽  
Author(s):  
Sarita NEGI ◽  
Saurabh K. SINGH ◽  
Nirupma PATI ◽  
Vikas HANDA ◽  
Ruchi CHAUHAN ◽  
...  

The apo(a) [apolipoprotein(a)] gene is responsible for variations in plasma lipoprotein(a), high levels of which are a risk factor for atherosclerosis and myocardial infarction. The apo(a) promoter stimulates the expression of reporter genes in HepG2 cells, but not in HeLa cells. In the present study, we demonstrate that the 1.4 kb apo(a) promoter comprises two composite regulatory regions: a distal negative regulatory module (positions −1432 to −716) and a proximal tissue-specific module (−716 to −616). The distal negative regulatory module contains two strong negative regulatory regions [polymorphic PNR (pentanucleotide repeat region) and NREβ (negative regulatory element β)], which sandwich the postive regulatory region PREβ (positive regulatory element β). The PNR was shown to bind to transcription factors in a tissue-specific manner, whereas the ubiquitous transcription factors hepatocyte nuclear factor 3α and GATA binding protein 4 bound to NREβ to repress gene transcription. The proximal tissue-specific module contains two regulatory elements: an activating region (PREα) that activates transcription in HepG2 cells, and NREα, which is responsible for repressing the apo(a) gene in HeLa cells. NREα binds to a HeLa-specific repressor. These multiple regulatory elements might work co-operatively to finely regulate apo(a) gene expression. Although the tissue-specific module is required for apo(a) gene activation and repression in a tissue-specific manner, the combinatorial interplay of the distal and proximal regulators might define the complex pathway(s) of apo(a) gene regulation.


Sign in / Sign up

Export Citation Format

Share Document