scholarly journals Altered aggrecan synthesis correlates with cell and nucleus structure in statically compressed cartilage

1996 ◽  
Vol 109 (2) ◽  
pp. 499-508 ◽  
Author(s):  
M.D. Buschmann ◽  
E.B. Hunziker ◽  
Y.J. Kim ◽  
A.J. Grodzinsky

Previous studies have shown that static equilibrium compression of cartilage tissue in vivo and in vitro decreases chondrocyte synthesis of aggrecan molecules. In order to identify mechanisms of cellular response to loading, we have investigated alterations in cell and nucleus structure and the accompanying changes in the synthesis of aggrecan in statically compressed cartilage explants. Using glutaraldehyde fixation and quantitative autoradiography of compressed and radiolabeled cartilage disks we spatially localized newly synthesized aggrecan. Using stereological tools to analyze these same specimens we estimated the cell and nucleus volume, surface area and directional radii. We found that aggrecan synthesis was reduced overall in compressed tissue disks. However, the compression induced a spatial (radial) inhomogeneity in aggrecan synthesis which was not present in uncompressed disks. This spatial inhomogeneity appeared to be directly related to mechanical boundary conditions and the manner in which the load was applied and, therefore, may represent a spatially specific functional adaptation to mechanical loading. Coincident with reduced aggrecan synthesis, we observed reductions in cell and nucleus volume and radii in the direction of compression which were in approximate proportion to the reduction in tissue thickness. Cell and nucleus dimensions perpendicular to the direction of compression did not change significantly. Therefore the observed deformation of the cell and nucleus in statically compressed cartilage approximately followed the dimensional changes imposed on external specimen surfaces. The strong correlation observed between local changes in aggrecan synthesis and alterations in cell and nucleus structure also lend support to certain hypotheses regarding the intracellular signal transduction pathways that may be important in the biosynthetic response of chondrocytes to mechanical loading.

2004 ◽  
Vol 08 (01) ◽  
pp. 1-12 ◽  
Author(s):  
Andrea L. Clark ◽  
Linda Mills ◽  
David A Hart ◽  
Walter Herzog

Mechanical loading of articular cartilage affects the synthesis and degradation of matrix macromolecules. Much of the work in this area has involved mechanical loading of articular cartilage explants or cells in vitro and assessing biological responses at the mRNA and protein levels. In this study, we developed a new experimental technique to load an intact patellofemoral joint in vivo using muscle stimulation. The articular cartilages were cyclically loaded for one hour in a repeatable and measurable manner. Cartilage was harvested from central and peripheral regions of the femoral groove and patella, either immediately after loading or after a three hour recovery period. Total RNA was isolated from the articular cartilage and biological responses were assessed on the mRNA level using the reverse transcriptase-polymerase chain reaction. Articular cartilage from intact patellofemoral joints demonstrated heterogeneity at the mRNA level for six of the genes assessed independent of the loading protocol. Cyclical loading of cartilage in its native environment led to alterations in mRNA levels for a subset of molecules when assessed immediately after the loading period. However, the increases in TIMP-1 and decreases in bFGF mRNA levels were transient; being present immediately after load application but not after a three hour recovery period.


1999 ◽  
Vol 13 (1) ◽  
pp. 93-98 ◽  
Author(s):  
E.H. Burger ◽  
J. Klein-Nulend

In this paper, we review recent studies of the mechanism by which mechanical loading of bone is transduced into cellular signals of bone adaptation. Current biomechanical theory and in vivo as well as in vitro experiments agree that the three-dimensional network of osteocytes and bone-lining cells provides the cellular basis for mechanosensing in bone, leading to adaptive bone (re)modeling. They also agree that flow of interstitial fluid through the lacunar-canalicular porosity of bone, as a result of mechanical loading, most likely provides the stimulus for mechanosensing, and informs the bone cellular network about the adequacy of the existing bone structure. Important signaling molecules involved in in vivo adaptive bone formation, as well as in in vitro cellular response to fluid flow, are nitric oxide and prostaglandins. The expression of key enzymes for nitric oxide and prostaglandin production in bone cells is altered by fluid shear stress in vitro. Together, these studies have increased our understanding of the cell biology underlying Wolff's Law. This may lead to new strategies for combating disuse-related osteoporosis, and may also be of use in understanding and predicting the long-term integration of bone-replacing implants.


Cartilage ◽  
2021 ◽  
pp. 194760352110476
Author(s):  
Yannick Nossin ◽  
Eric Farrell ◽  
Wendy J.L.M. Koevoet ◽  
Frank Datema ◽  
Rodrigo A. Somoza ◽  
...  

Objective Cartilage is avascular and numerous studies have identified the presence of single anti- and pro-angiogenic factors in cartilage. To better understand the maintenance hyaline cartilage, we assessed the angiogenic potential of complete cartilage releasate with functional assays in vitro and in vivo. Design We evaluated the gene expression profile of angiogenesis-related factors in healthy adult human articular cartilage with a transcriptome-wide analysis generated by next-generation RNAseq. The effect on angiogenesis of the releasate of cartilage tissue was assessed with a chick chorioallantoic membrane (CAM) assay as well as human umbilical vein endothelial cell (HUVEC) migration and proliferation assays using conditioned media generated from tissue-engineered cartilage derived from human articular and nasal septum chondrocytes as well as explants from bovine articular cartilage and human nasal septum. Experiments were done with triplicate samples of cartilage from 3 different donors. Results RNAseq data of 3 healthy human articular cartilage donors revealed that the majority of known angiogenesis-related factors expressed in healthy adult articular cartilage are pro-angiogenic. The releasate from generated cartilage as well as from tissue explants, demonstrated at least a 3.1-fold increase in HUVEC proliferation and migration indicating a pro-angiogenic effect of cartilage. Finally, the CAM assay demonstrated that cartilage explants can indeed attract vessels; however, their ingrowth was not observed. Conclusion Using multiple approaches, we show that cartilage releasate has an inherent pro-angiogenic capacity. It remains vessel free due to anti-invasive properties associated with the tissue itself.


Life Sciences ◽  
2021 ◽  
pp. 119728
Author(s):  
Fatemeh Dehghani Nazhvani ◽  
Leila Mohammadi Amirabad ◽  
Arezo Azari ◽  
Hamid Namazi ◽  
Simzar Hosseinzadeh ◽  
...  

Cartilage ◽  
2021 ◽  
pp. 194760352110235
Author(s):  
Hongjun Zhang ◽  
Wendi Zheng ◽  
Du Li ◽  
Jia Zheng

Objective miR-146a-5p was found to be significantly upregulated in cartilage tissue of patients with osteoarthritis (OA). NUMB was shown to be involved in the autophagy regulation process of cells. We aimed to learn whether NUMB was involved in the apoptosis or autophagy process of chondrocytes in OA and related with miR-146a-5p. Methods QRT-PCR was used to detect miR-146a-5p level in 22 OA cartilage tissues and 22 controls. The targets of miR-146a-5p were analyzed using software and the luciferase reporter experiment. The apoptosis and autophagy, and related proteins were detected in chondrocytes treated with miR-146a-5p mimic/inhibitor or pcDNA3.1-NUMB/si-NUMB and IL-1β, respectively. In vivo experiment, intra-articular injection of miR-146a-5p antagomir/NC was administered at the knee of OA male mice before and after model construction. Chondrocyte apoptosis and the expression of apoptosis and autophagy-related proteins were also detected. Results miR-146a-5p was highly expressed in knee cartilage tissue of patients with OA, while NUMB was lowly expressed and negatively regulated by miR-146a-5p. Upregulation of miR-146a-5p can promote cell apoptosis and reduce autophagy of human and mouse chondrocytes by modulating the levels of cleaved caspase-3, cleaved PARP, Bax, Beclin 1, ATG5, p62, LC3-I, and LC3-II. Increasing the low level of NUMB reversed the effects of miR-146a-5p on chondrocyte apoptosis and autophagy. Intra-articular injection of miR-146a-5p antagomir can also reverse the effects of miR-146a-5p on the apoptosis and autophagy of knee joint chondrocytes in OA mice. Conclusion Downregulation of miR-146a-5p suppresses the apoptosis and promotes autophagy of chondrocytes by targeting NUMB in vivo and in vitro.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 855
Author(s):  
Paola Serrano Martinez ◽  
Lorena Giuranno ◽  
Marc Vooijs ◽  
Robert P. Coppes

Radiotherapy is involved in the treatment of many cancers, but damage induced to the surrounding normal tissue is often inevitable. Evidence suggests that the maintenance of homeostasis and regeneration of the normal tissue is driven by specific adult tissue stem/progenitor cells. These tasks involve the input from several signaling pathways. Irradiation also targets these stem/progenitor cells, triggering a cellular response aimed at achieving tissue regeneration. Here we discuss the currently used in vitro and in vivo models and the involved specific tissue stem/progenitor cell signaling pathways to study the response to irradiation. The combination of the use of complex in vitro models that offer high in vivo resemblance and lineage tracing models, which address organ complexity constitute potential tools for the study of the stem/progenitor cellular response post-irradiation. The Notch, Wnt, Hippo, Hedgehog, and autophagy signaling pathways have been found as crucial for driving stem/progenitor radiation-induced tissue regeneration. We review how these signaling pathways drive the response of solid tissue-specific stem/progenitor cells to radiotherapy and the used models to address this.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 346
Author(s):  
Hui Ling Ma ◽  
Ana Carolina Urbaczek ◽  
Fayene Zeferino Ribeiro de Souza ◽  
Paulo Augusto Gomes Garrido Carneiro Leão ◽  
Janice Rodrigues Perussi ◽  
...  

Microfluidics is an essential technique used in the development of in vitro models for mimicking complex biological systems. The microchip with microfluidic flows offers the precise control of the microenvironment where the cells can grow and structure inside channels to resemble in vivo conditions allowing a proper cellular response investigation. Hence, this study aimed to develop low-cost, simple microchips to simulate the shear stress effect on the human umbilical vein endothelial cells (HUVEC). Differentially from other biological microfluidic devices described in the literature, we used readily available tools like heat-lamination, toner printer, laser cutter and biocompatible double-sided adhesive tapes to bind different layers of materials together, forming a designed composite with a microchannel. In addition, we screened alternative substrates, including polyester-toner, polyester-vinyl, glass, Permanox® and polystyrene to compose the microchips for optimizing cell adhesion, then enabling these microdevices when coupled to a syringe pump, the cells can withstand the fluid shear stress range from 1 to 4 dyne cm2. The cell viability was monitored by acridine orange/ethidium bromide (AO/EB) staining to detect live and dead cells. As a result, our fabrication processes were cost-effective and straightforward. The materials investigated in the assembling of the microchips exhibited good cell viability and biocompatibility, providing a dynamic microenvironment for cell proliferation. Therefore, we suggest that these microchips could be available everywhere, allowing in vitro assays for daily laboratory experiments and further developing the organ-on-a-chip concept.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shojiro Katoh ◽  
Atsuki Fujimaru ◽  
Masaru Iwasaki ◽  
Hiroshi Yoshioka ◽  
Rajappa Senthilkumar ◽  
...  

AbstractRegenerative medicine applications require cells that are not inflicted with senescence after in vitro culture for an optimal in vivo outcome. Methods to overcome replicative senescence include genomic modifications which have their own disadvantages. We have evaluated a three-dimensional (3D) thermo-reversible gelation polymer (TGP) matrix environment for its capabilities to reverse cellular senescence. The expression of senescence-associated beta-galactosidase (SA-βgal) by human chondrocytes from osteoarthritis-affected cartilage tissue, grown in a conventional two-dimensional (2D) monolayer culture versus in 3D-TGP were compared. In 2D, the cells de-differentiated into fibroblasts, expressed higher SA-βgal and started degenerating at 25 days. SA-βgal levels decreased when the chondrocytes were transferred from the 2D to the 3D-TGP culture, with cells exhibiting a tissue-like growth until 42–45 days. Other senescence associated markers such as p16INK4a and p21 were also expressed only in 2D cultured cells but not in 3D-TGP tissue engineered cartilage. This is a first-of-its-kind report of a chemically synthesized and reproducible in vitro environment yielding an advantageous reversal of aging of human chondrocytes without any genomic modifications. The method is worth consideration as an optimal method for growing cells for regenerative medicine applications.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1334
Author(s):  
Ye Liu ◽  
Zahra Mohri ◽  
Wissal Alsheikh ◽  
Umber Cheema

The development of biomimetic, human tissue models is recognized as being an important step for transitioning in vitro research findings to the native in vivo response. Oftentimes, 2D models lack the necessary complexity to truly recapitulate cellular responses. The introduction of physiological features into 3D models informs us of how each component feature alters specific cellular response. We conducted a systematic review of research papers where the focus was the introduction of key biomimetic features into in vitro models of cancer, including 3D culture and hypoxia. We analysed outcomes from these and compiled our findings into distinct groupings to ascertain which biomimetic parameters correlated with specific responses. We found a number of biomimetic features which primed cancer cells to respond in a manner which matched in vivo response.


1999 ◽  
Vol 19 (6) ◽  
pp. 4028-4038 ◽  
Author(s):  
Shen-Hsi Yang ◽  
Alex Galanis ◽  
Andrew D. Sharrocks

ABSTRACT Mitogen-activated protein (MAP) kinase-mediated signalling to the nucleus is an important event in the conversion of extracellular signals into a cellular response. However, the existence of multiple MAP kinases which phosphorylate similar phosphoacceptor motifs poses a problem in maintaining substrate specificity and hence the correct biological response. Both the extracellular signal-regulated kinase (ERK) and c-Jun NH2-terminal kinase (JNK) subfamilies of MAP kinases use a second specificity determinant and require docking to their transcription factor substrates to achieve maximal substrate activation. In this study, we demonstrate that among the different MAP kinases, the MADS-box transcription factors MEF2A and MEF2C are preferentially phosphorylated and activated by the p38 subfamily members p38α and p38β2. The efficiency of phosphorylation in vitro and transcriptional activation in vivo of MEF2A and MEF2C by these p38 subtypes requires the presence of a kinase docking domain (D-domain). Furthermore, the D-domain from MEF2A is sufficient to confer p38 responsiveness on different transcription factors, and reciprocal effects are observed upon the introduction of alternative D-domains into MEF2A. These results therefore contribute to our understanding of signalling to MEF2 transcription factors and demonstrate that the requirement for substrate binding by MAP kinases is an important facet of three different subclasses of MAP kinases (ERK, JNK, and p38).


Sign in / Sign up

Export Citation Format

Share Document