Role of plectin in cytoskeleton organization and dynamics

1998 ◽  
Vol 111 (17) ◽  
pp. 2477-2486 ◽  
Author(s):  
G. Wiche

Plectin and its isoforms are versatile cytoskeletal linker proteins of very large size (>500 kDa) that are abundantly expressed in a wide variety of mammalian tissues and cell types. Earlier studies indicated that plectin molecules were associated with and/or directly bound to subcomponents of all three major cytoskeletal filament networks, the subplasma membrane protein skeleton, and a variety of plasma membrane-cytoskeleton junctional complexes, including those found in epithelia, various types of muscle, and fibroblasts. In conjunction with biochemical data, this led to the concept that plectin plays an important role in cytoskeleton network organization, with consequences for viscoelastic properties of the cytoplasm and the mechanical integrity and resistance of cells and tissues. Several recent findings lent strong support to this concept. One was that a hereditary disease, epidermolysis bullosa simplex (EBS)-MD, characterized by severe skin blistering combined with muscular dystrophy, is caused by defects in the plectin gene. Another was the generation of plectin-deficient mice by targeted inactivation of the gene. Dying shortly after birth, these animals exhibited severe defects in skin, skeletal muscle and heart. Moreover, in vitro studies with cells derived from such animals unmasked an essential new role of plectin as regulator of cellular processes involving actin stress fibers dynamics. Comprehensive analyses of the gene locus in man, mouse, and rat point towards a complex gene expression machinery, comprising an unprecedented diversity of differentially spliced transcripts with distinct 5′ starting exons, probably regulated by different promoters. This could provide a basis for cell type-dependent and/or developmentally-controlled expression of plectin isoforms, exerting different functions through binding to distinct partners. Based on its versatile functions and structural diversification plectin emerges as a prototype cytolinker protein among a family of proteins sharing partial structural homology and functions.

2021 ◽  
Author(s):  
Amada D. Caliz ◽  
Hyung-Jin Yoo ◽  
Anastassiia Vertii ◽  
Cathy Tournier ◽  
Roger J. Davis ◽  
...  

Mitogen kinase kinase 4 (MKK4) and Mitogen kinase kinase 7 (MKK7) are members of the MAP2K family which can activate downstream mitogen-activated protein kinases (MAPKs). MKK4 has been implicated in the activation of both, c-Jun N-terminal Kinase (JNK) and p38 MAPK, whereas MKK7 only activates JNK in response to different stimuli. The stimuli as well as cell type determine the choice of MAP2K member that mediates the response. In a variety of cell types, the MKK7 contributes to the activation of downstream MAPKs, JNK, which is known to regulate essential cellular processes, such as cell death, differentiation, stress response, and cytokine secretion. Previous studies have implicated the role of MKK7 in stress signaling pathways and cytokine production. However, little is known about the degree to which MKK7 and MKK4 contributes to innate immune response in macrophages as well as during inflammation in vivo. To address this question and elucidate the role of MKK7 and MKK4 in macrophage and in vivo, we developed MKK7- and MKK4-deficient mouse models with tamoxifen-inducible Rosa26 CreERT. This study reports that MKK7 is required for JNK activation both in vitro and in vivo. Additionally, we demonstrated that MKK7 in macrophages is necessary for LPS induced cytokine production and migration which appears to be a major contributor to the inflammatory response in vivo. Whereas MKK4 plays a significant but minor role in cytokine production in vivo.


2021 ◽  
Vol 22 (17) ◽  
pp. 9364
Author(s):  
Amada D. Caliz ◽  
Hyung-Jin Yoo ◽  
Anastassiia Vertii ◽  
Ana C. Dolan ◽  
Cathy Tournier ◽  
...  

Mitogen kinase kinase 4 (MKK4) and mitogen kinase kinase 7 (MKK7) are members of the MAP2K family that can activate downstream mitogen-activated protein kinases (MAPKs). MKK4 has been implicated in the activation of both c-Jun N-terminal kinase (JNK) and p38 MAPK, while MKK7 has been reported to activate only JNK in response to different stimuli. The stimuli, as well as the cell type determine which MAP2K member will mediate a given response. In various cell types, MKK7 contributes to the activation of downstream MAPKs, JNK, which is known to regulate essential cellular processes, such as cell death, differentiation, stress response, and cytokine secretion. Previous studies have also implicated the role of MKK7 in stress signaling pathways and cytokine production. However, little is known about the degree to which MKK4 and MKK7 contribute to innate immune responses in macrophages or during inflammation in vivo. To address this question and to elucidate the role of MKK4 and MKK7 in macrophage and in vivo, we developed MKK4- and MKK7-deficient mouse models with tamoxifen-inducible Rosa26 CreERT. This study reports that MKK7 is required for JNK activation both in vitro and in vivo. Additionally, we demonstrated that MKK7 in macrophages is necessary for lipopolysaccharide (LPS)-induced cytokine production, M1 polarization, and migration, which appear to be a major contributor to the inflammatory response in vivo. Conversely, MKK4 plays a significant, but minor role in cytokine production in vivo.


1999 ◽  
Vol 81 (06) ◽  
pp. 951-956 ◽  
Author(s):  
J. Corral ◽  
R. González-Conejero ◽  
J. Rivera ◽  
F. Ortuño ◽  
P. Aparicio ◽  
...  

SummaryThe variability of the platelet GP Ia/IIa density has been associated with the 807 C/T polymorphism (Phe 224) of the GP Ia gene in American Caucasian population. We have investigated the genotype and allelic frequencies of this polymorphism in Spanish Caucasians. The T allele was found in 35% of the 284 blood donors analyzed. We confirmed in 159 healthy subjects a significant association between the 807 C/T polymorphism and the platelet GP Ia density. The T allele correlated with high number of GP Ia molecules on platelet surface. In addition, we observed a similar association of this polymorphism with the expression of this protein in other blood cell types. The platelet responsiveness to collagen was determined by “in vitro” analysis of the platelet activation and aggregation response. We found no significant differences in these functional platelet parameters according to the 807 C/T genotype. Finally, results from 3 case/control studies involving 302 consecutive patients (101 with coronary heart disease, 104 with cerebrovascular disease and 97 with deep venous thrombosis) determined that the 807 C/T polymorphism of the GP Ia gene does not represent a risk factor for arterial or venous thrombosis.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Lei Qin ◽  
Xuekun Fu ◽  
Jing Ma ◽  
Manxia Lin ◽  
Peijun Zhang ◽  
...  

AbstractOsteocytes act as mechanosensors in bone; however, the underlying mechanism remains poorly understood. Here we report that deleting Kindlin-2 in osteocytes causes severe osteopenia and mechanical property defects in weight-bearing long bones, but not in non-weight-bearing calvariae. Kindlin-2 loss in osteocytes impairs skeletal responses to mechanical stimulation in long bones. Control and cKO mice display similar bone loss induced by unloading. However, unlike control mice, cKO mice fail to restore lost bone after reloading. Osteocyte Kindlin-2 deletion impairs focal adhesion (FA) formation, cytoskeleton organization and cell orientation in vitro and in bone. Fluid shear stress dose-dependently increases Kindlin-2 expression and decreases that of Sclerostin by downregulating Smad2/3 in osteocytes; this latter response is abolished by Kindlin-2 ablation. Kindlin-2-deficient osteocytes express abundant Sclerostin, contributing to bone loss in cKO mice. Collectively, we demonstrate an indispensable novel role of Kindlin-2 in maintaining skeletal responses to mechanical stimulation by inhibiting Sclerostin expression during osteocyte mechanotransduction.


2010 ◽  
Vol 2010 ◽  
pp. 1-11 ◽  
Author(s):  
Galileo Escobedo ◽  
Gloria Soldevila ◽  
Guadalupe Ortega-Pierres ◽  
Jesús Ramsés Chávez-Ríos ◽  
Karen Nava ◽  
...  

MAP kinases (MAPK) are involved in the regulation of cellular processes such as reproduction and growth. In parasites, the role of MAPK has been scarcely studied. Here, we describe the participation of an ERK-like protein in estrogen-dependent reproduction of the helminth parasiteTaenia crassiceps. Our results show that 17β-estradiol induces a concentration-dependent increase in the bud number of in vitro cultured cysticerci. If parasites are also incubated in presence of an ERK-inhibitor, the stimulatory effect of estrogen is blocked. The expression of ERK-like mRNA and its corresponding protein was detected in the parasite. The ERK-like protein was over-expressed by all treatments. Nevertheless, a strong induction of phosphorylation of this protein was observed only in response to 17β-estradiol. Cross-contamination by host cells was discarded by flow cytometry analysis. Parasite cells expressing the ERK-like protein were exclusively located at the subtegument tissue by confocal microscopy. Finally, the ERK-like protein was separated by bidimensional electrophoresis and then sequenced, showing the conserved TEY activation motif, typical of all known ERK 1/2 proteins. Our results show that an ERK-like protein is involved in the molecular signalling during the interaction between the host andT. crassiceps, and may be considered as target for anti-helminth drugs design.


2020 ◽  
Vol 134 (8) ◽  
pp. 1001-1025 ◽  
Author(s):  
Sonya Frazier ◽  
Martin W. McBride ◽  
Helen Mulvana ◽  
Delyth Graham

Abstract Placental microRNAs (miRNAs) regulate the placental transcriptome and play a pathological role in preeclampsia (PE), a hypertensive disorder of pregnancy. Three PE rodent model studies explored the role of placental miRNAs, miR-210, miR-126, and miR-148/152 respectively, by examining expression of the miRNAs, their inducers, and potential gene targets. This review evaluates the role of miR-210, miR-126, and miR-148/152 in PE by comparing findings from the three rodent model studies with in vitro studies, other animal models, and preeclamptic patients to provide comprehensive insight into genetic components and pathological processes in the placenta contributing to PE. The majority of studies demonstrate miR-210 is upregulated in PE in part driven by HIF-1α and NF-κBp50, stimulated by hypoxia and/or immune-mediated processes. Elevated miR-210 may contribute to PE via inhibiting anti-inflammatory Th2-cytokines. Studies report an up- and downregulation of miR-126, arguably reflecting differences in expression between cell types and its multifunctional capacity. MiR-126 may play a pro-angiogenic role by mediating the PI3K-Akt pathway. Most studies report miR-148/152 family members are upregulated in PE. Evidence suggests they may inhibit DNA methylation of genes involved in metabolic and inflammatory pathways. Given the genetic heterogeneity of PE, it is unlikely that a single placental miRNA is a suitable therapeutic target for all patients. Investigating miRNAs in PE subtypes in patients and animal models may represent a more appropriate approach going forward. Developing methods for targeting placental miRNAs and specific placental cell types remains crucial for research seeking to target placental miRNAs as a novel treatment for PE.


Author(s):  
Mohammad H. Rashid ◽  
Thaiz F. Borin ◽  
Roxan Ara ◽  
Raziye Piranlioglu ◽  
Bhagelu R. Achyut ◽  
...  

AbstractMyeloid-derived suppressor cells (MDSCs) are an indispensable component of the tumor microenvironment (TME), and our perception regarding the role of MDSCs in tumor promotion is attaining extra layer of intricacy in every study. In conjunction with MDSC’s immunosuppressive and anti-tumor immunity, they candidly facilitate tumor growth, differentiation, and metastasis in several ways that yet to be explored. Alike any other cell types, MDSCs also release a tremendous amount of exosomes or nanovesicles of endosomal origin and partake in intercellular communications by dispatching biological macromolecules. There has not been any experimental study done to characterize the role of MDSCs derived exosomes (MDSC exo) in the modulation of TME. In this study, we isolated MDSC exo and demonstrated that they carry a significant amount of proteins that play an indispensable role in tumor growth, invasion, angiogenesis, and immunomodulation. We observed higher yield and more substantial immunosuppressive potential of exosomes isolated from MDSCs in the primary tumor area than those are in the spleen or bone marrow. Our in vitro data suggest that MDSC exo are capable of hyper activating or exhausting CD8 T-cells and induce reactive oxygen species production that elicits activation-induced cell death. We confirmed the depletion of CD8 T-cells in vivo by treating the mice with MDSC exo. We also observed a reduction in pro-inflammatory M1-macrophages in the spleen of those animals. Our results indicate that immunosuppressive and tumor-promoting functions of MDSC are also implemented by MDSC-derived exosomes which would open up a new avenue of MDSC research and MDSC-targeted therapy.


2018 ◽  
Vol 115 (20) ◽  
pp. 5253-5258 ◽  
Author(s):  
Hideyuki Yanai ◽  
Shiho Chiba ◽  
Sho Hangai ◽  
Kohei Kometani ◽  
Asuka Inoue ◽  
...  

IFN regulatory factor 3 (IRF3) is a transcription regulator of cellular responses in many cell types that is known to be essential for innate immunity. To confirm IRF3’s broad role in immunity and to more fully discern its role in various cellular subsets, we engineered Irf3-floxed mice to allow for the cell type-specific ablation of Irf3. Analysis of these mice confirmed the general requirement of IRF3 for the evocation of type I IFN responses in vitro and in vivo. Furthermore, immune cell ontogeny and frequencies of immune cell types were unaffected when Irf3 was selectively inactivated in either T cells or B cells in the mice. Interestingly, in a model of lipopolysaccharide-induced septic shock, selective Irf3 deficiency in myeloid cells led to reduced levels of type I IFN in the sera and increased survival of these mice, indicating the myeloid-specific, pathogenic role of the Toll-like receptor 4–IRF3 type I IFN axis in this model of sepsis. Thus, Irf3-floxed mice can serve as useful tool for further exploring the cell type-specific functions of this transcription factor.


Blood ◽  
1997 ◽  
Vol 89 (12) ◽  
pp. 4415-4424 ◽  
Author(s):  
Jon Lømo ◽  
Heidi Kiil Blomhoff ◽  
Sten Eirik Jacobsen ◽  
Stanislaw Krajewski ◽  
John C. Reed ◽  
...  

Abstract Interleukin-13 (IL-13) is a novel T-cell–derived cytokine with IL-4–like effects on many cell types. In human B lymphocytes, IL-13 induces activation, stimulates proliferation in combination with anti-IgM or anti-CD40 antibodies, and directs Ig isotype switching towards IgE and IgG4 isotypes. We show here that IL-13 also regulates human B-cell apoptosis. IL-13 reduced spontaneous apoptosis of peripheral blood B cells in vitro, as shown by measurement of DNA fragmentation using the TUNEL and Nicoletti assays. The inhibition of cell death by IL-13 alone was significant but modest, but was potently enhanced in combination with CD40 ligand (CD40L), a survival stimulus for B cells by itself. Interestingly, IL-13 increased the expression of CD40 on peripheral blood B cells, providing a possible mechanism for the observed synergy. IL-13 alone was a less potent inhibitor of apoptosis than IL-4. Moreover, there was no additive effect of combining IL-4 and IL-13 at supraoptimal concentrations, which is consistent with the notion that the IL-4 and IL-13 binding sites share a common signaling subunit. The combination of IL-13 with CD40L augmented the expression of the Bcl-2 homologues Bcl-xL and Mcl-1, suggesting this as a possible intracellular mechanism of induced survival. By contrast, levels of Bcl-2, and two other Bcl-2 family members, Bax and Bak, remained unaltered. Given the importance of the CD40-CD40L interaction in B-cell responses, these results suggest a significant role of IL-13 in the regulation of B-cell apoptosis.


2020 ◽  
Vol 117 (46) ◽  
pp. 28980-28991
Author(s):  
Zhihui Song ◽  
Wei Wei ◽  
Wenming Xiao ◽  
Essel D. Al-Saleem ◽  
Reza Nejati ◽  
...  

More than 70% of Epstein–Barr virus (EBV)-negative Hodgkin lymphoma (HL) cases display inactivation of TNFAIP3 (A20), a ubiquitin-editing protein that regulates nonproteolytic protein ubiquitination, indicating the significance of protein ubiquitination in HL pathogenesis. However, the precise mechanistic roles of A20 and the ubiquitination system remain largely unknown in this disease. Here, we performed high-throughput CRISPR screening using a ubiquitin regulator-focused single-guide RNA library in HL lines carrying either wild-type or mutant A20. Our CRISPR screening highlights the essential oncogenic role of the linear ubiquitin chain assembly complex (LUBAC) in HL lines, which overlaps with A20 inactivation status. Mechanistically, LUBAC promotes IKK/NF-κB activity and NEMO linear ubiquitination in A20 mutant HL cells, which is required for prosurvival genes and immunosuppressive molecule expression. As a tumor suppressor, A20 directly inhibits IKK activation and HL cell survival via its C-terminal linear-ubiquitin binding ZF7. Clinically, LUBAC activity is consistently elevated in most primary HL cases, and this is correlated with high NF-κB activity and low A20 expression. To further understand the complete mechanism of NF-κB activation in A20 mutant HL, we performed a specifically designed CD83-based NF-κB CRISPR screen which led us to identify TAK1 kinase as a major mediator for NF-κB activation in cells dependent on LUBAC, where the LUBAC-A20 axis regulates TAK1 and IKK complex formation. Finally, TAK1 inhibitor Takinib shows promising activity against HL in vitro and in a xenograft mouse model. Altogether, these findings provide strong support that targeting LUBAC or TAK1 could be attractive therapeutic strategies in A20 mutant HL.


Sign in / Sign up

Export Citation Format

Share Document