Sustained ERK phosphorylation is necessary but not sufficient for MMP-9 regulation in endothelial cells: involvement of Ras-dependent and -independent pathways

2000 ◽  
Vol 113 (23) ◽  
pp. 4319-4330 ◽  
Author(s):  
E. Genersch ◽  
K. Hayess ◽  
Y. Neuenfeld ◽  
H. Haller

Endothelial expression of matrix metalloproteinase-9 (MMP-9), which degrades native type IV collagen, was implicated as a prerequisite for angiogenesis. Therefore, the aim of this study was to determine signaling requirements that regulate MMP-9 expression in endothelial cells. Both, primary and permanent human umbilical vein endothelial cells (HUVEC and ECV304, respectively) were stimulated with phorbol 12-myristate 13-acetate (PMA) and the cytokine tumor necrosis factor-(alpha) (TNF(alpha)) to induce MMP-9 expression. While both cell types responded to PMA at the protein, mRNA and promoter level by induction of MMP-9, TNF(alpha) caused this response only in ECV304. Inhibitors specific for mitogen-activated protein/ERK kinase 1/2 (MEK1/2), protein kinase C (PKC), and Ras and co-transfections of wild-type and mutant Raf were used to elucidate the signaling cascades involved. Thus, we could show that the Raf/MEK/ERK cascade is mainly responsible for MMP-9 induction in endothelial cells and that this cascade is regulated independently of PKC and Ras subsequent to TNF(alpha) stimulation and in a PKC-dependent manner as a result of PMA treatment. In addition, PMA triggers a Ras-dependent signal transduction pathway bypassing the phosphorylation of ERK. Finally, we provide evidence that sustained phosphorylation of ERK1/2 is necessary but not sufficient for expression of MMP-9.

1995 ◽  
Vol 269 (1) ◽  
pp. C42-C47 ◽  
Author(s):  
D. Macconi ◽  
M. Foppolo ◽  
S. Paris ◽  
M. Noris ◽  
S. Aiello ◽  
...  

Platelet-activating factor (PAF) is known to modulate polymorphonuclear leukocyte (PMN) adhesion to endothelial cells cultured under static conditions and activated by thrombin. In contrast, there are no data on the role of PAF in PMN adhesion to cells exposed to flow conditions and activated by stimuli other than thrombin. Here we used the PAF receptor antagonist L-659,989 to evaluate PMN adhesion to human umbilical vein endothelial cells (HUVEC) in basal conditions or upon challenge with thrombin or tumor necrosis factor-alpha (TNF-alpha). Experiments were performed under dynamic flow using a parallel-plate flow chamber and a computer-based image analysis system. Rolling and adhesion of PMNs to endothelial cells significantly increased upon stimulation with thrombin. Thrombin-stimulated HUVEC also synthesized higher amounts of PAF than untreated cells. Pretreatment of PMNs with L-659,989 significantly reduced their rolling and adhesion to thrombin-activated HUVEC. Stimulation of HUVEC with TNF-alpha significantly increased the number of rolling and adherent PMNs as compared with untreated cells. Adhesion of PMNs to and migration across TNF-alpha-stimulated HUVEC were reduced by L-659,989, whereas cell rolling was unchanged. We conclude that PAF mediates leukocyte interaction under flow conditions with HUVEC activated by inflammatory stimuli.


Blood ◽  
2001 ◽  
Vol 98 (4) ◽  
pp. 995-1002 ◽  
Author(s):  
Maria Koziolkiewicz ◽  
Edyta Gendaszewska ◽  
Maria Maszewska ◽  
C. A. Stein ◽  
Wojciech J. Stec

Many reports indicate different nonantisense yet sequence-specific effects of antisense phosphorothioate oligonucleotides. Products of enzymatic degradation of the oligonucleotides can also influence cell proliferation. The cytotoxic effects of deoxyribonucleoside-5′-phosphates (dNMPs) and their 5′-phosphorothioate analogs, deoxyribonucleoside-5′-monophosphorothioates (dNMPSs) on 4 human cell types (HeLa, HL-60, K-562, and endothelial cells) were examined, and the effects were correlated with the catabolism of these compounds. The results indicate that differences in cytotoxicity of dNMPs or dNMPSs in these cells depend upon different activity of an ecto-5′-nucleotidase. It has also been found that dNMPSs stimulate proliferation of human umbilical vein endothelial cells and HL-60 cells in a concentration-dependent manner. This stimulation might be caused by the binding of deoxynucleoside-5′-phosphorothioates to as-yet unidentified nucleotide receptor(s) at the cell surface.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Effie E. Bastounis ◽  
Yi-Ting Yeh ◽  
Julie A. Theriot

AbstractEndothelial cells respond to changes in subendothelial stiffness by altering their migration and mechanics, but whether those responses are due to transcriptional reprogramming remains largely unknown. We measured traction force generation and also performed gene expression profiling for two endothelial cell types grown in monolayers on soft or stiff matrices: primary human umbilical vein endothelial cells (HUVEC) and immortalized human microvascular endothelial cells (HMEC-1). Both cell types respond to changes in subendothelial stiffness by increasing the traction stresses they exert on stiffer as compared to softer matrices, and exhibit a range of altered protein phosphorylation or protein conformational changes previously implicated in mechanotransduction. However, the transcriptome has only a minimal role in this conserved biomechanical response. Only few genes were differentially expressed in each cell type in a stiffness-dependent manner, and none were shared between them. In contrast, thousands of genes were differentially regulated in HUVEC as compared to HMEC-1. HUVEC (but not HMEC-1) upregulate expression of TGF-β2 on stiffer matrices, and also respond to application of exogenous TGF-β2 by enhancing their endogenous TGF-β2 expression and their cell-matrix traction stresses. Altogether, these findings provide insights into the relationship between subendothelial stiffness, endothelial mechanics and variation of the endothelial cell transcriptome, and reveal that subendothelial stiffness, while critically altering endothelial cells’ mechanical behavior, minimally affects their transcriptome.


1991 ◽  
Vol 114 (4) ◽  
pp. 855-863 ◽  
Author(s):  
P Defilippi ◽  
V van Hinsbergh ◽  
A Bertolotto ◽  
P Rossino ◽  
L Silengo ◽  
...  

In this paper we report that the integrin complex alpha 1/beta 1, a laminin/collagen receptor, is expressed on cultured foreskin microvascular endothelium, but is absent on endothelial cells from large vessels such as the aorta and umbilical and femoral veins. The restricted expression of integrin alpha 1/beta 1 to microvascular endothelium was also demonstrated in vivo, by immunohistochemical staining of human tissue sections. Alpha 1 specific antibodies reacted strongly with endothelial cells of small blood vessels and capillaries in several tissues, but not with endothelium of vein and arteries of umbilical cord. Expression of integrin alpha 1 can be induced in cultured umbilical vein endothelial cells by treatment with 5 ng/ml tumor necrosis factor alpha (TNF alpha). Induction of alpha 1 subunit expression also occurred after treatment of umbilical vein endothelium with 10(-5) M retinoic acid or with 10 nM PMA; Maximal induction of alpha 1 integrin was reached after 48 h of treatment and costimulation with TNF alpha and PMA resulted in a synergistic effect. The induction of alpha 1 integrin changed the adhesive properties of umbilical vein endothelial cells, by increasing the adhesiveness to collagen, laminin, and laminin fragment P1, while adhesion to fibronectin and laminin fragment E8 remained constant. The alpha 1 integrin is thus a marker of a specific population of endothelial cells and its expression confers distinctive properties of interaction with the underlying basal membrane.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Zhimin Zhang ◽  
Congying Wei ◽  
Yanfen Zhou ◽  
Tao Yan ◽  
Zhengqiang Wang ◽  
...  

Homocysteine- (Hcy-) induced endothelial cell apoptosis has been suggested as a cause of Hcy-dependent vascular injury, while the proposed molecular pathways underlying this process are unclear. In this study, we investigated the adverse effects of Hcy on human umbilical vein endothelial cells (HUVEC) and the underlying mechanisms. Our results demonstrated that moderate-dose Hcy treatment induced HUVEC apoptosis in a time-dependent manner. Furthermore, prolonged Hcy treatment increased the expression of NOX4 and the production of intracellular ROS but decreased the ratio of Bcl-2/Bax and mitochondrial membrane potential (MMP), resulting in the leakage of cytochrome c and activation of caspase-3. Prolonged Hcy treatment also upregulated glucose-regulated protein 78 (GRP78), activated protein kinase RNA-like ER kinase (PERK), and induced the expression of C/EBP homologous protein (CHOP) and the phosphorylation of NF-κb. The inhibition of NOX4 decreased the production of ROS and alleviated the Hcy-induced HUVEC apoptosis and ER stress. Blocking the PERK pathway partly alleviated Hcy-induced HUVEC apoptosis and the activation of NF-κb. Taken together, our results suggest that Hcy-induced mitochondrial dysfunction crucially modulated apoptosis and contributed to the activation of ER stress in HUVEC. The excessive activation of the PERK pathway partly contributed to Hcy-induced HUVEC apoptosis and the phosphorylation of NF-κb.


1987 ◽  
Author(s):  
K T Preissner ◽  
E Anders ◽  
G Müller-Berghaus

The interaction of the complement inhibitor S protein, which is identical to the serum spreading factor, vitronectin, with cultured human endothelial cells of macro- and microvas- cular origin was investigated. Purified S protein, coated for 2 h on polystyrene petri dishes, induced concentration- and time-dependent attachment and spreading of human umbilical vein endothelial cells (HUVEC) as well as human omental tissqe microvasular endothelial cells (HOTMEC) at 37°C. With 3 × 105 cells/ml (final concentration) more than 50% of the cells attached within 2 h incubation at 0.3 - 3 μg/ml S protein. The effect of S protein was specific, since only monospecific antibodies against S protein prevented attachment of cells, while antibodies against fibronectin, fibrinogen or von Wille-brand factor were uneffective. The pentapeptide Gly-Arg-Gly-Asp-Ser, which contains the cell-attachment site of these adhesive proteins including S protein, inhibited the activity of S protein to promote attachment of endothelial cells in a concentration-dependent fashion; at 200 μM peptide, less than 10% of the cells became attached. Direct binding of S protein to HUVEC and HOTMEC was studied with cells in suspension at a concentration of 1 × 106 cells/ml in the presence of 1% (w/v) human serum albumin and 1 mM CaCl2 and was maximal after 120 min. Both cell types bound S protein in a concentration-dependent fashion with an estimated dissociation constant KD=0.2pM. More than 80% of bound radiolabelled S protein was displaced by unlabelled S protein, whereas binding was reduced to about 50% by the addition in excess of either fibronectin, fibrinogen, von Willebrand factor or the pentapeptide. These findings provide evidence for the specific association of S protein with endothelial cells, ultimately leading to attachment and spreading of cells. Although the promotion of attachment was highly specific for S protein, other adhesive proteins than S protein, also known to associate with endothelial cells, may in part compete with direct S protein binding.


1992 ◽  
Vol 263 (4) ◽  
pp. C767-C772 ◽  
Author(s):  
C. L. Myers ◽  
S. J. Wertheimer ◽  
J. Schembri-King ◽  
T. Parks ◽  
R. W. Wallace

The intercellular adhesion molecule 1 (ICAM-1) is induced on endothelial cells by tumor necrosis factor-alpha (TNF-alpha), interleukin-1 beta (IL-1 beta), and lipopolysaccharide (LPS). We have reported the sensitivity of cytokine-induced ICAM-1 expression to protein kinase inhibitors, including inhibitors of protein kinase C (PKC) [C. L. Myers, S. N. Desai, J. Schembri-King, G. L. Letts, and R. W. Wallace. Am. J. Physiol. 262 (Cell Physiol. 31): C365-C373, 1992]. To directly investigate the role of PKC in ICAM-1 induction, we downregulated PKC by pretreatment of human umbilical vein endothelial cells with phorbol 12-myristate 13-acetate (PMA) and assessed ICAM-1 protein and mRNA induction elicited by subsequent exposure to inflammatory stimuli. PMA treatment results in ICAM-1 protein induction that declines to basal levels by 3 days. Western blots of endothelial cell lysates reveal a nearly complete loss of immunologically reactive PKC. Subsequent activation with cytokine or LPS leads to reinduction of ICAM-1 protein and mRNA; however, the cells no longer produced substantial amounts of ICAM-1 protein or mRNA in response to PMA stimulation. Cross desensitization is observed with phorbol dibutyrate, while 4 alpha-phorbol has no desensitizing effect. The data indicate that PKC activation, while capable of inducing ICAM-1 expression, is not essential for ICAM-1 induction by the inflammatory mediators TNF-alpha, IL-1 beta, or LPS.


PLoS ONE ◽  
2015 ◽  
Vol 10 (11) ◽  
pp. e0142283 ◽  
Author(s):  
Yi-Fang Cheng ◽  
Guang-Huar Young ◽  
Jiun-Tsai Lin ◽  
Hyun-Hwa Jang ◽  
Chin-Chen Chen ◽  
...  

2003 ◽  
Vol 10 (4) ◽  
pp. 558-563 ◽  
Author(s):  
C. S. M. Oude Nijhuis ◽  
E. Vellenga ◽  
S. M. G. J. Daenen ◽  
W. A. Kamps ◽  
E. S. J. M. de Bont

ABSTRACT Cancer patients who are leukopenic due to chemotherapy are susceptible to bacterial infections. Normally, clinical conditions during bacterial infections are caused by pathogen-associated molecular patterns, which are components that bind to Toll-like receptor (TLR) 2 (TLR-2) and TLR-4 on leukocytes, resulting in the production of inflammatory cytokines. The mechanism of this inflammatory response in cancer patients with diminished numbers of leukocytes is not completely clear. The levels of interleukin 1β (IL-1β) and tumor necrosis factor alpha measured in the circulation of leukopenic cancer patients are lower than those measured in that of nonleukopenic patients during bacterial infections, whereas plasma interleukin 8 (IL-8) levels show distinct identical increases during bacterial infections in both leukopenic and nonleukopenic patients. Normally, these cytokines are mainly secreted by leukocytes. In cancer patients with bacterial infections and a diminished number of leukocytes, other sources of IL-8 production, such as endothelial cells, might be expected. Endothelial cells instead of leukocytes become the most important producers of IL-8 during bacterial infections in patients with chemotherapy-induced leukopenia through TLR-2 and TLR-4 signaling. Whole blood samples from six cancer patients were stimulated with lipopolysaccharide (LPS), and then IL-8 concentrations in supernatants were measured. Further, human umbilical vein endothelial cells (HUVECs) were incubated with sera from leukopenic cancer patients with or without bacterial infections, and then IL-8 concentrations in supernatants were measured (n = 6). In addition, the same HUVEC experiment was performed with the addition of neutralizing antibodies against TLR-2 and TLR-4. During leukopenia (<109 cells/liter), LPS stimulation of whole blood did not result in an increase in IL-8 levels. However, when endothelial cells were incubated with sera from leukopenic cancer patients during bacterial infections, a three- to eightfold increase in IL-8 production was found, compared to the IL-8 production found after incubation with sera from patients without signs of infections. This increase did not reflect a higher level of IL-8 already present in the sera. Further, we demonstrated that IL-8 production induced in endothelial cells by sera from patients with documented gram-negative infections could be reduced significantly by up to 40% when the cells were incubated with neutralizing antibodies against TLR-4 (P = 0.028). The addition of TLR-2 antibodies slightly enhanced the reduction of IL-8 production. These results suggest that during bacterial infections in cancer patients with markedly diminished numbers of leukocytes, endothelial cells become important producers of IL-8 through TLR-4 signaling and, to a lesser extent, TLR-2 signaling.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Purum Kang ◽  
Seung Ho Han ◽  
Hea Kyung Moon ◽  
Jeong-Min Lee ◽  
Hyo-Keun Kim ◽  
...  

The purpose of the present study is to examine the effects of essential oil ofCitrus bergamiaRisso (bergamot, BEO) on intracellular Ca2+in human umbilical vein endothelial cells. Fura-2 fluorescence was used to examine changes in intracellular Ca2+concentration[Ca2+]i. In the presence of extracellular Ca2+, BEO increased[Ca2+]i, which was partially inhibited by a nonselective Ca2+channel blocker La3+. In Ca2+-free extracellular solutions, BEO increased[Ca2+]iin a concentration-dependent manner, suggesting that BEO mobilizes intracellular Ca2+. BEO-induced[Ca2+]iincrease was partially inhibited by a Ca2+-induced Ca2+release inhibitor dantrolene, a phospholipase C inhibitor U73122, and an inositol 1,4,5-triphosphate (IP3)-gated Ca2+channel blocker, 2-aminoethoxydiphenyl borane (2-APB). BEO also increased[Ca2+]iin the presence of carbonyl cyanide m-chlorophenylhydrazone, an inhibitor of mitochondrial Ca2+uptake. In addition, store-operated Ca2+entry (SOC) was potentiated by BEO. These results suggest that BEO mobilizes Ca2+from primary intracellular stores via Ca2+-induced and IP3-mediated Ca2+release and affect promotion of Ca2+influx, likely via an SOC mechanism.


Sign in / Sign up

Export Citation Format

Share Document