scholarly journals Control of mitochondrial morphology by a human mitofusin

2001 ◽  
Vol 114 (5) ◽  
pp. 867-874 ◽  
Author(s):  
A. Santel ◽  
M.T. Fuller

Although changes in mitochondrial size and arrangement accompany both cellular differentiation and human disease, the mechanisms that mediate mitochondrial fusion, fission and morphogenesis in mammalian cells are not understood. We have identified two human genes encoding potential mediators of mitochondrial fusion. The mitofusins (Mfn1 and Mfn2) are homologs of the Drosophila protein fuzzy onion (Fzo) that associate with mitochondria and alter mitochondrial morphology when expressed by transient transfection in tissue culture cells. An internal region including a predicted bipartite transmembrane domain (TM) is sufficient to target Mfn2 to mitochondria and requires hydrophobic residues within the TM. Co-expression of Mfn2 with a dominant interfering mutant dynamin-related protein (Drp1(K38A)) proposed to block mitochondrial fission resulted in long mitochondrial filaments and networks. Formation of mitochondrial filaments and networks required a wild-type Mfn2 GTPase domain, suggesting that the Mfn2 GTPase regulates or mediates mitochondrial fusion and that mitofusins and dynamin related GTPases play opposing roles in mitochondrial fusion and fission in mammals, as in yeast.

Author(s):  
Laura M. Szczesniak ◽  
Caden G. Bonzerato ◽  
Richard J. H. Wojcikiewicz

The function of the Bcl-2 family member Bok is currently enigmatic, with various disparate roles reported, including mediation of apoptosis, regulation of mitochondrial morphology, binding to inositol 1,4,5-trisphosphate receptors, and regulation of uridine metabolism. To better define the roles of Bok, we examined its interactome using TurboID-mediated proximity labeling in HeLa cells, in which Bok knock-out leads to mitochondrial fragmentation and Bok overexpression leads to apoptosis. Labeling with TurboID-Bok revealed that Bok was proximal to a wide array of proteins, particularly those involved in mitochondrial fission (e.g., Drp1), endoplasmic reticulum-plasma membrane junctions (e.g., Stim1), and surprisingly among the Bcl-2 family members, just Mcl-1. Comparison with TurboID-Mcl-1 and TurboID-Bak revealed that the three Bcl-2 family member interactomes were largely independent, but with some overlap that likely identifies key interactors. Interestingly, when overexpressed, Mcl-1 and Bok interact physically and functionally, in a manner that depends upon the transmembrane domain of Bok. Overall, this work shows that the Bok interactome is different from those of Mcl-1 and Bak, identifies novel proximities and potential interaction points for Bcl-2 family members, and suggests that Bok may regulate mitochondrial fission via Mcl-1 and Drp1.


2004 ◽  
Vol 279 (50) ◽  
pp. 52726-52734 ◽  
Author(s):  
Rie Sugioka ◽  
Shigeomi Shimizu ◽  
Yoshihide Tsujimoto

Mitochondrial morphology and physiology are regulated by the processes of fusion and fission. Some forms of apoptosis are reported to be associated with mitochondrial fragmentation. We showed that overexpression of Fzo1A/B (rat) proteins involved in mitochondrial fusion, or silencing of Dnm1 (rat)/Drp1 (human) (a mitochondrial fission protein), increased elongated mitochondria in healthy cells. After apoptotic stimulation, these interventions inhibited mitochondrial fragmentation and cell death, suggesting that a process involved in mitochondrial fusion/fission might play a role in the regulation of apoptosis. Consistently, silencing of Fzo1A/B or Mfn1/2 (a human homolog of Fzo1A/B) led to an increase of shorter mitochondria and enhanced apoptotic death. Overexpression of Fzo1 inhibited cytochromecrelease and activation of Bax/Bak, as assessed from conformational changes and oligomerization. Silencing of Mfn or Drp1 caused an increase or decrease of mitochondrial sensitivity to apoptotic stimulation, respectively. These results indicate that some of the proteins involved in mitochondrial fusion/fission modulate apoptotic cell death at the mitochondrial level.


2005 ◽  
Vol 16 (11) ◽  
pp. 5077-5086 ◽  
Author(s):  
Annett Koch ◽  
Yisang Yoon ◽  
Nina A. Bonekamp ◽  
Mark A. McNiven ◽  
Michael Schrader

The mammalian dynamin-like protein DLP1/Drp1 has been shown to mediate both mitochondrial and peroxisomal fission. In this study, we have examined whether hFis1, a mammalian homologue of yeast Fis1, which has been shown to participate in mitochondrial fission by an interaction with DLP1/Drp1, is also involved in peroxisomal growth and division. We show that hFis1 localizes to peroxisomes in addition to mitochondria. Through differential tagging and deletion experiments, we demonstrate that the transmembrane domain and the short C-terminal tail of hFis1 is both necessary and sufficient for its targeting to peroxisomes and mitochondria, whereas the N-terminal region is required for organelle fission. hFis1 promotes peroxisome division upon ectopic expression, whereas silencing of Fis1 by small interfering RNA inhibited fission and caused tubulation of peroxisomes. These findings provide the first evidence for a role of Fis1 in peroxisomal fission and suggest that the fission machinery of mitochondria and peroxisomes shares common components.


2004 ◽  
Vol 15 (11) ◽  
pp. 5001-5011 ◽  
Author(s):  
Yang-ja Lee ◽  
Seon-Yong Jeong ◽  
Mariusz Karbowski ◽  
Carolyn L. Smith ◽  
Richard J. Youle

During apoptosis, the mitochondrial network fragments. Using short hairpin RNAs for RNA interference, we manipulated the expression levels of the proteins hFis1, Drp1, and Opa1 that are involved in mitochondrial fission and fusion in mammalian cells, and we characterized their functions in mitochondrial morphology and apoptosis. Down-regulation of hFis1 powerfully inhibits cell death to an extent significantly greater than down-regulation of Drp1 and at a stage of apoptosis distinct from that induced by Drp1 inhibition. Cells depleted of Opa1 are extremely sensitive to exogenous apoptosis induction, and some die spontaneously by a process that requires hFis1 expression. Wild-type Opa1 may function normally as an antiapoptotic protein, keeping spontaneous apoptosis in check. However, if hFis1 is down-regulated, cells do not require Opa1 to prevent apoptosis, suggesting that Opa1 may be normally counteracting the proapoptotic action of hFis1. We also demonstrate in this study that mitochondrial fragmentation per se does not result in apoptosis. However, we provide further evidence that multiple components of the mitochondrial morphogenesis machinery can positively and negatively regulate apoptosis.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Jeong Eon Lee ◽  
Bong Jong Seo ◽  
Min Ji Han ◽  
Yean Ju Hong ◽  
Kwonho Hong ◽  
...  

During embryonic development, cells undergo changes in gene expression, signaling pathway activation/inactivation, metabolism, and intracellular organelle structures, which are mediated by mitochondria. Mitochondria continuously switch their morphology between elongated tubular and fragmented globular via mitochondrial fusion and fission. Mitochondrial fusion is mediated by proteins encoded by Mfn1, Mfn2, and Opa1, whereas mitochondrial fission is mediated by proteins encoded by Fis1 and Dnm1L. Here, we investigated the expression patterns of mitochondria-related genes during the differentiation of mouse embryonic stem cells (ESCs). Pluripotent ESCs maintain stemness in the presence of leukemia inhibitory factor (LIF) via the JAK-STAT3 pathway but lose pluripotency and differentiate in response to the withdrawal of LIF. We analyzed the expression levels of mitochondrial fusion- and fission-related genes during the differentiation of ESCs. We hypothesized that mitochondrial fusion genes would be overexpressed while the fission genes would be downregulated during the differentiation of ESCs. Though the mitochondria exhibited an elongated morphology in ESCs differentiating in response to LIF withdrawal, only the expression of Mfn2 was increased and that of Dnm1L was decreased as expected, the other exceptions being Mfn1, Opa1, and Fis1. Next, by comparing gene expression and mitochondrial morphology, we proposed an index that could precisely represent mitochondrial changes during the differentiation of pluripotent stem cells by analyzing the expression ratios of three fusion- and two fission-related genes. Surprisingly, increased Mfn2/Dnm1L ratio was correlated with elongation of mitochondria during the differentiation of ESCs. Moreover, application of this index to other specialized cell types revealed that neural stems cells (NSCs) and mouse embryonic fibroblasts (MEFs) showed increased Mfn2/Dnm1L ratio compared to ESCs. Thus, we suggest that the Mfn2/Dnm1L ratio could reflect changes in mitochondrial morphology according to the extent of differentiation.


2006 ◽  
Vol 387 (12) ◽  
pp. 1551-1558 ◽  
Author(s):  
Ann E. Frazier ◽  
Clement Kiu ◽  
Diana Stojanovski ◽  
Nicholas J. Hoogenraad ◽  
Michael T. Ryan

Abstract It is now appreciated that mitochondria form tubular networks that adapt to the requirements of the cell by undergoing changes in their shape through fission and fusion. Proper mitochondrial distribution also appears to be required for ATP delivery and calcium regulation, and, in some cases, for cell development. While we now realise the great importance of mitochondria for the cell, we are only beginning to work out how these organelles undergo the drastic morphological changes that are essential for cellular function. Of the few known components involved in shaping mitochondria, some have been found to be essential to life and their gene mutations are linked to neurological disorders, while others appear to be recruited in the activation of cell death pathways. Here we review our current understanding of the functions of the main players involved in mitochondrial fission, fusion and distribution in mammalian cells.


2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Alexandra G Moyzis ◽  
Robert L Thomas ◽  
Jennifer Kuo ◽  
Åsa B Gustafsson

The BCL-2 family proteins are important regulators of mitochondrial structure and integrity. MCL-1 is an anti-apoptotic BCL-2 protein that is highly expressed in the myocardium compared to the other anti-apoptotic proteins BCL-2 and BCL-X L. Recently, we reported that MCL-1 is essential for myocardial homeostasis. Cardiac-specific deletion of MCL-1 in mice led to rapid mitochondrial dysfunction, hypertrophy, and lethal cardiomyopathy. Surprisingly, MCL-1 deficient myocytes did not undergo apoptotic cell death. Instead, the cells displayed signs of mitochondrial deterioration and necrotic cell death, suggesting that MCL-1 has an additional role in maintaining mitochondrial function in cardiac myocytes. Similarly, deletion of MCL-1 in fibroblasts caused rapid mitochondrial fragmentation followed by cell death at 72 hours. Interestingly, the MCL-1 deficient fibroblasts retained cytochrome c in the mitochondria , confirming that the cells were not undergoing apoptotic cell death. We have also identified that MCL-1 localizes to the mitochondrial outer membrane (OM) and the matrix in the myocardium and that the two forms respond differently to stress. MCL-1 OM was rapidly degraded after myocardial infarction or fasting, whereas MCL-1 Matrix levels were maintained. Similarly, starvation of MEFs resulted in rapid degradation of MCL-1 OM , whereas MCL-1 Matrix showed delayed degradation. Treatment with the mitochondrial uncoupler FCCP led to rapid degradation of both forms. This suggests that the susceptibility to degradation is dependent on its localization and the nature of the stress. Our data also suggests that these two forms perform distinct functions in regulating mitochondrial morphology and survival. Overexpression of MCL-1 Matrix promoted mitochondrial fusion in fibroblasts under baseline conditions and protected cells against FCCP-mediated mitochondrial fission and clearance by autophagosomes. Thus, our data suggest that MCL-1 exists in two separate locations where it performs different functions. MCL-1 Matrix promotes mitochondrial fusion, which protects cells against excessive mitochondrial clearance during unfavorable conditions.


2000 ◽  
Vol 151 (2) ◽  
pp. 341-352 ◽  
Author(s):  
Edith D. Wong ◽  
Jennifer A. Wagner ◽  
Steven W. Gorsich ◽  
J. Michael McCaffery ◽  
Janet M. Shaw ◽  
...  

Mutations in the dynamin-related GTPase, Mgm1p, have been shown to cause mitochondrial aggregation and mitochondrial DNA loss in Saccharomyces cerevisiae cells, but Mgm1p's exact role in mitochondrial maintenance is unclear. To study the primary function of MGM1, we characterized new temperature sensitive MGM1 alleles. Examination of mitochondrial morphology in mgm1 cells indicates that fragmentation of mitochondrial reticuli is the primary phenotype associated with loss of MGM1 function, with secondary aggregation of mitochondrial fragments. This mgm1 phenotype is identical to that observed in cells with a conditional mutation in FZO1, which encodes a transmembrane GTPase required for mitochondrial fusion, raising the possibility that Mgm1p is also required for fusion. Consistent with this idea, mitochondrial fusion is blocked in mgm1 cells during mating, and deletion of DNM1, which encodes a dynamin-related GTPase required for mitochondrial fission, blocks mitochondrial fragmentation in mgm1 cells. However, in contrast to fzo1 cells, deletion of DNM1 in mgm1 cells restores mitochondrial fusion during mating. This last observation indicates that despite the phenotypic similarities observed between mgm1 and fzo1 cells, MGM1 does not play a direct role in mitochondrial fusion. Although Mgm1p was recently reported to localize to the mitochondrial outer membrane, our studies indicate that Mgm1p is localized to the mitochondrial intermembrane space. Based on our localization data and Mgm1p's structural homology to dynamin, we postulate that it functions in inner membrane remodeling events. In this context, the observed mgm1 phenotypes suggest that inner and outer membrane fission is coupled and that loss of MGM1 function may stimulate Dnm1p-dependent outer membrane fission, resulting in the formation of mitochondrial fragments that are structurally incompetent for fusion.


2019 ◽  
Author(s):  
Jeong Eon Lee ◽  
Bong Jong Seo ◽  
Min Ji Han ◽  
Yean Ju Hong ◽  
Kwonho Hong ◽  
...  

AbstractDuring embryonic development, cells undergo changes in gene expression, signaling pathway activation/inactivation, metabolism, and intracellular organelle structures, which are mediated by mitochondria. Mitochondria continuously switch their morphology between elongated tubular and fragmented globular via mitochondrial fusion and fission. Mitochondrial fusion is mediated by proteins encoded by Mfn1, Mfn2, and Opa1, whereas mitochondrial fission is mediated by proteins encoded by Fis1 and Dmn1L. Here, we investigated the expression patterns of mitochondria-related genes during the differentiation of mouse embryonic stem cells (ESCs) in response to leukemia inhibitory factor (LIF) withdrawal. The expression of Mfn2 and Dnm1L was, as expected, increased and decreased, respectively. By comparing gene expression and mitochondrial morphology, we proposed an index that could precisely represent mitochondrial changes during the differentiation of pluripotent stem cells by analyzing the expression ratios of three fusion- and two fission-related genes. Surprisingly, increased Mfn2/Dnm1L ratio was correlated with elongation of mitochondria during the differentiation of ESCs. Moreover, application of this index to other specialized cell types revealed that neural stems cells (NSCs) and mouse embryonic fibroblasts (MEFs) showed increased Mfn2/Dnm1L ratio compared to ESCs. Thus, we suggest that the Mfn2/Dnm1L ratio could reflect changes in mitochondrial morphology according to the extent of differentiation.


2009 ◽  
Vol 89 (3) ◽  
pp. 799-845 ◽  
Author(s):  
Marc Liesa ◽  
Manuel Palacín ◽  
Antonio Zorzano

The meaning of the word mitochondrion (from the Greek mitos, meaning thread, and chondros, grain) illustrates that the heterogeneity of mitochondrial morphology has been known since the first descriptions of this organelle. Such a heterogeneous morphology is explained by the dynamic nature of mitochondria. Mitochondrial dynamics is a concept that includes the movement of mitochondria along the cytoskeleton, the regulation of mitochondrial architecture (morphology and distribution), and connectivity mediated by tethering and fusion/fission events. The relevance of these events in mitochondrial and cell physiology has been partially unraveled after the identification of the genes responsible for mitochondrial fusion and fission. Furthermore, during the last decade, it has been identified that mutations in two mitochondrial fusion genes ( MFN2 and OPA1) cause prevalent neurodegenerative diseases (Charcot-Marie Tooth type 2A and Kjer disease/autosomal dominant optic atrophy). In addition, other diseases such as type 2 diabetes or vascular proliferative disorders show impaired MFN2 expression. Altogether, these findings have established mitochondrial dynamics as a consolidated area in cellular physiology. Here we review the most significant findings in the field of mitochondrial dynamics in mammalian cells and their implication in human pathologies.


Sign in / Sign up

Export Citation Format

Share Document