scholarly journals Investigations on the Role of the MicroRNA-338-5p/Wnt Family Member 2B (WNT2B) Axis in Regulating the Pathogenesis of Nasopharyngeal Carcinoma (NPC)

2021 ◽  
Vol 11 ◽  
Author(s):  
Suzhen Wang ◽  
Tianning Yang ◽  
Zhengxiang He

BackgroundThe involvement of microRNA-338-5p in modulating NPC pathogenesis is still largely unknown, and this study aimed to investigate this issue.MethodsThe expressions of cancer associated genes were determined by Real-Time qPCR and Western Blot, and cell apoptosis was determined by flow cytometer (FCM). CCK-8 assay and colony formation assay were respectively used to determine cell proliferation and colony formation abilities. Transwell assay was used to evaluate cell migration. The expression levels of Ki67 protein in mice tissues were measured by Immunohistochemistry (IHC) assay.ResultsThe present study found that microRNA-338-5p suppressed NPC progression by degrading its downstream target, Wnt family member 2B (WNT2B). Specifically, microRNA-338-5p tended to be low-expressed in NPC tissues and cell lines, compared to the non-tumor nasopharyngeal mucosa tissues and normal nasopharyngeal cell line (NP69). Upregulation of microRNA-338-5p inhibited proliferation, mobility, and epithelial-mesenchymal transition (EMT) in NPC cells in vitro, while silencing of microRNA-338-5p had opposite effects. Consistently, microRNA-338-5p suppressed tumorigenesis of NPC cells in vivo. In addition, microRNA-338-5p targeted WNT2B for degradation and inhibition, and the inhibiting effects of microRNA-338-5p overexpression on NPC development were reversed by upregulating WNT2B.ConclusionsTaken together, we concluded that microRNA-338-5p targeted WNT2B to hinder NPC development.

2019 ◽  
Vol 39 (1) ◽  
Author(s):  
Xiao-ming Hou ◽  
Shu-qiao Yuan ◽  
Da Zhao ◽  
Xiao-jun Liu ◽  
Xin-an Wu

Abstract Lactate dehydrogenase A (LDH-A) is a key enzyme during glycolysis, which increases the synthesis of related proteins and has elevated activity in cancer cells. The role of LDH-A in lung adenocarcinoma (LUAD) progression was investigated in the present study. Expression levels of LDH-A were assessed in LUAD samples, and the relationship between LDH-A expression status and the prognosis of LUAD patients was confirmed. The effect of LDH-A on proliferation, invasion, migration, and colony formation of cancer cells was assessed. We further determined the role of LDH-A in tumor growth in vivo by using xenograft LUAD tumor models. The potential mechanism of LDH-A promotion in LUAD progression was explored. LDH-A showed an abnormally high expression in LUAD, which is closely associated with poor prognosis in patients with LUAD. In in vitro experiments, silencing LDH-A expression in LUAD cells could effectively inhibit proliferation, invasion, migration, and colony formation of cancer cells. In in vivo experiments, tumor growth was markedly inhibited by LDH-A silencing in a xenograft model of LUAD. Notably, LDH-A could also promote tumor progression by regulating epithelial–mesenchymal transition (EMT)-related molecules. LDH-A can promote the malignant biological behaviors of LUAD cells, and thus can be a potential target for LUAD treatment.


2010 ◽  
Vol 21 (2) ◽  
pp. 244-253 ◽  
Author(s):  
Matthew Reid MacPherson ◽  
Patricia Molina ◽  
Serhiy Souchelnytskyi ◽  
Christer Wernstedt ◽  
Jorge Martin-Pérez ◽  
...  

Snail1 is a major factor for epithelial-mesenchymal transition (EMT), an important event in tumor metastasis and in other pathologies. Snail1 is tightly regulated at transcriptional and posttranscriptional levels. Control of Snail1 protein stability and nuclear export by GSK3β phosphorylation is important for Snail1 functionality. Stabilization mechanisms independent of GSK3β have also been reported, including interaction with LOXL2 or regulation of the COP9 signalosome by inflammatory signals. To get further insights into the role of Snail1 phosphorylation, we have performed an in-depth analysis of in vivo human Snail1 phosphorylation combined with mutational studies. We identify new phosphorylation sites at serines 11, 82, and 92 and confirmed previously suggested phosphorylations at serine 104 and 107. Serines 11 and 92 participate in the control of Snail1 stability and positively regulate Snail1 repressive function and its interaction with mSin3A corepressor. Furthermore, serines 11 and 92 are required for Snail1-mediated EMT and cell viability, respectively. PKA and CK2 have been characterized as the main kinases responsible for in vitro Snail1 phosphorylation at serine 11 and 92, respectively. These results highlight serines 11 and 92 as new players in Snail1 regulation and suggest the participation of CK2 and PKA in the modulation of Snail1 functionality.


2020 ◽  
Vol 11 (12) ◽  
Author(s):  
Hongli Li ◽  
Qingjie Mu ◽  
Guoxin Zhang ◽  
Zhixin Shen ◽  
Yuanyuan Zhang ◽  
...  

AbstractIncreasing lines of evidence indicate the role of long non-coding RNAs (LncRNAs) in gene regulation and tumor development. Hence, it is important to elucidate the mechanisms of LncRNAs underlying the proliferation, metastasis, and invasion of lung adenocarcinoma (LUAD). We employed microarrays to screen LncRNAs in LUAD tissues with and without lymph node metastasis and revealed their effects on LUAD. Among them, Linc00426 was selected for further exploration in its expression, the biological significance, and the underlying molecular mechanisms. Linc00426 exhibits ectopic expression in LUAD tissues and cells. The ectopic expression has been clinically linked to tumor size, lymphatic metastasis, and tumor differentiation of patients with LUAD. The deregulation of Linc00426 contributes to a notable impairment in proliferation, invasion, metastasis, and epithelial–mesenchymal transition (EMT) in vitro and in vivo. Mechanistically, the deregulation of Linc00426 could reduce cytoskeleton rearrangement and matrix metalloproteinase expression. Meanwhile, decreasing the level of Linc00426 or increasing miR-455-5p could down-regulate the level of UBE2V1. Thus, Linc00426 may act as a competing endogenous RNA (ceRNA) to abate miR-455-5p-dependent UBE2V1 reduction. We conclude that Linc00426 accelerates LUAD progression by acting as a molecular sponge to regulate miR-455-5p, and may be a potential novel tumor marker for LUAD.


Biomolecules ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1676
Author(s):  
Monserrat Olea-Flores ◽  
Juan C. Juárez-Cruz ◽  
Miriam D. Zuñiga-Eulogio ◽  
Erika Acosta ◽  
Eduardo García-Rodríguez ◽  
...  

Leptin is a hormone secreted mainly by adipocytes; physiologically, it participates in the control of appetite and energy expenditure. However, it has also been linked to tumor progression in different epithelial cancers. In this review, we describe the effect of leptin on epithelial–mesenchymal transition (EMT) markers in different study models, including in vitro, in vivo, and patient studies and in various types of cancer, including breast, prostate, lung, and ovarian cancer. The different studies report that leptin promotes the expression of mesenchymal markers and a decrease in epithelial markers, in addition to promoting EMT-related processes such as cell migration and invasion and poor prognosis in patients with cancer. Finally, we report that leptin has the greatest biological relevance in EMT and tumor progression in breast, lung, prostate, esophageal, and ovarian cancer. This relationship could be due to the key role played by the enriched tumor microenvironment in adipose tissue. Together, these findings demonstrate that leptin is a key biomolecule that drives EMT and metastasis in cancer.


2018 ◽  
Vol 18 (6) ◽  
pp. 558-566 ◽  
Author(s):  
Jie Wu ◽  
Dingxin Di ◽  
Chen Zhao ◽  
Yingyi Liu ◽  
Hongxia Chen ◽  
...  

Glioma-associated oncogenes (GLIs) are zinc finger protein family members and downstream regulatory factors of the classic Hedgehog (Hh) signaling pathway. GLI proteins influence the growth and development of organisms and aid in tissue repair. However, aberrant expression of the GLI family member GLI1 promotes carcinogenesis by inducing epithelial–mesenchymal transition (EMT), angiogenesis, and other signaling pathways. Overexpression of GLI1 is thought to be an indicator of poor prognosis as well as a potential therapeutic target for cancers. GLI inhibitors such as zerumbone, GANT61, resveratrol, and cyclopamine depress the Hh pathway in vitro and in vivo cancer research, and other non-canonical pathways may also activate expression of GLI1. Here, we summarize GLI function in carcinogenesis and cancer-targeted therapy.


2020 ◽  
Author(s):  
Yunliang Lu ◽  
Xiaohui Zhou ◽  
Weilin Zhao ◽  
Zhipeng Liao ◽  
Bo Li ◽  
...  

Abstract Background Acy1 Coenzyme A Acyltransferases1 (ACAT1) is a key enzyme in the metabolism of ketone bodies, but its expression and biological function in the pathogenesis of NPC remains underexplored. Methods The mRNA and protein expression levels of ACAT1 in NPC and normal control tissues were analyzed by qPCR and immunohistochemistry staining, respectively. GEO database was applied for meta-analysis of ACAT1 mRNA expression and DNA promoter methylation. The role of ACAT1 in NPC proliferation was examined by CCK8 and colony formation assays in vitro and tumorigenicity in vivo. The wound healing and transwell assays were used for analyzing the migratory and invasive ability. cDNA microarray analysis was performed to identify the genes involved in epithelial-mesenchymal transition and dysregulated by ACAT1. These changes were further confirmed by western blot. Results We found that ACAT1 is inactivated in NPC cell lines and primary tissues. DNA microarray data showed higher methylation in the CpG island region of ACAT1 in NPC than normal tissues. The demethylating reagent 5-aza-dC significantly restored the transcription of ACAT1 in NPC cell lines, suggesting that ACAT1 was inactivated by DNA promoter hypermethylation. Ectopic overexpression of ACAT1 remarkably suppressed the proliferation and colony formation of NPC cells in vitro. As well, the tumorigenesis of NPC cells overexpressing ACAT1 was decreased in vivo. In addition, the migratory and invasive capacities of NPC cells was inhibited by ACAT1 overexpression. Importantly, the higher level of ACAT1 was accompanied by an increased expression of CDH1, EPCAM, and a decreased expression of vimentin and SPARC. This strongly indicates that ACAT1 is able to affect the epithelial-mesenchymal transition in NPC, thereby controlling cellular motility. In addition, we found that ACAT1 expression increases the intracellular level of β-HB. Moreover, exogenous β-HB remarkably inhibits the growth of NPC cells in a dose-dependent manner. Conclusions We have discovered that the ketone body metabolism enzyme ACAT1 is epigenetically downregulated in NPC and acts as a potential tumor suppressor in NPC. Our findings highlight the possibility of using the modulation of ketone body metabolism as effective adjuvant therapy for NPC.


2021 ◽  
Author(s):  
Ruiqi Chen ◽  
Yichong Ning ◽  
Guirong Zeng ◽  
Hao Zhou ◽  
Chao Tu ◽  
...  

Abstract Background: MiR-193a-5p has been observed to have oncogenic or tumor-suppressive function in different kinds of cancers. Na+/Ca2+ exchangers (NCX1, NCX2 and NCX3) normally extrude Ca2+ from the cell, and deregulation of the intracellular Ca2+ homeostasis is related to several kinds of diseases, including cancer. However, their roles and molecular mechanism in osteosarcoma are elusive.Methods: The expression of miR-193a-5p and NCX2 in osteosarcoma and corresponding adjacent noncancerous tissues was investigated by qRT-PCR. Colony formation assay, wound healing assay, transwell invasion assay and xenograft mouse model were used for in vitro and in vivo functional analyses. Tandem mass tag-based quantitative proteomics analysis was performed to identify the targets of miR-193a-5p.Results: This study showed that miR-193a-5p was upregulated in osteosarcoma tissues compared with the corresponding adjacent noncancerous tissues, and promoted colony formation, migration, invasion, and epithelial-mesenchymal transition (EMT) in vitro, as well as metastasis in vivo. Quantitative proteomics analysis identified NCX2 as a potential target of miR-193a-5p. Luciferase activity assay and Western blotting further confirmed that miR-193a-5p recognized the 3′-untranslated region of NCX2 mRNA, and negatively regulated NCX2 expression. NCX2 was downregulated in osteosarcoma tissues, and its expression was negatively correlated with miR-193a-5p levels. Ectopic expression of NCX2 in osteosarcoma cells could counteract the oncogenic effects of miR-193a-5p. These results indicate that miR-193a-5p exerts its effects by targeting NCX2. Further study demonstrated that NCX2 suppressed Ca2+-dependent Akt phosphorylation by decreasing intracellular Ca2+ efflux, then inhibited EMT process. Treatment with the antagomir against miR-193a-5p sensitized osteosarcoma to the Akt inhibitor afuresertib in a murine xenograft tumor model. Conclusion: This study revealed a miR-193a-5p/NCX2/AKT signaling axis in the progression of osteosarcoma, which may provide a new therapeutic target for osteosarcoma treatment.


2020 ◽  
Vol 319 (3) ◽  
pp. G309-G322
Author(s):  
Xiaohui Wan ◽  
Dongrui Guo ◽  
Qi Zhu ◽  
Rongfeng Qu

This study focused on the mechanism of miR-382 in epithelial mesenchymal transition and lymph node metastasis in PC in relation to Anxa3 and the PI3K/Akt signaling pathway. We found the inhibitory role of miR-382 in PC in vitro and in vivo.


2018 ◽  
Vol 96 (3) ◽  
pp. 326-331 ◽  
Author(s):  
Ping He ◽  
Xiaojie Jin

Objective: The aim of this study was to investigate the role of SOX10 in nasopharyngeal carcinoma (NPC) and the underlying molecular mechanisms. Methods: The expression of SOX10 was initially assessed in human NPC tissues and a series of NPC cell lines through quantitative real-time PCR (qRT-PCR) and Western blot. Then, cell proliferation, cycle, migration, and the invasiveness of NPC cells with knockdown of SOX10 were examined by MTT, flow cytometry, and Transwell migration and invasion assays, respectively. Finally, nude mice tumorigenicity experiments were performed to evaluate the effects of SOX10 on NPC growth and metastasis in vivo. Results: SOX10 was significantly increased in NPC tissues and cell lines. In-vitro experiments revealed that loss of SOX10 obviously inhibited cell proliferation, migration, and invasiveness, as well as the epithelial–mesenchymal transition (EMT) process in NPC cells. In-vivo experiments further demonstrated that disrupted SOX10 expression restrained NPC growth and metastasis, especially in lung and liver. Conclusion: Taken together, our data confirmed the role of SOX10 as an oncogene in NPC progression, and revealed that SOX10 may serve as a novel biomarker for diagnosis of NPC, as well as a potential therapeutic target against this disease.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Ben Yue ◽  
Chenlong Song ◽  
Linxi Yang ◽  
Ran Cui ◽  
Xingwang Cheng ◽  
...  

Abstract Background As one of the most frequent chemical modifications in eukaryotic mRNAs, N6-methyladenosine (m6A) modification exerts important effects on mRNA stability, splicing, and translation. Recently, the regulatory role of m6A in tumorigenesis has been increasingly recognized. However, dysregulation of m6A and its functions in tumor epithelial-mesenchymal transition (EMT) and metastasis remain obscure. Methods qRT-PCR and immunohistochemistry were used to evaluate the expression of methyltransferase-like 3 (METTL3) in gastric cancer (GC). The effects of METTL3 on GC metastasis were investigated through in vitro and in vivo assays. The mechanism of METTL3 action was explored through transcriptome-sequencing, m6A-sequencing, m6A methylated RNA immunoprecipitation quantitative reverse transcription polymerase chain reaction (MeRIP qRT-PCR), confocal immunofluorescent assay, luciferase reporter assay, co-immunoprecipitation, RNA immunoprecipitation and chromatin immunoprecipitation assay. Results Here, we show that METTL3, a major RNA N6-adenosine methyltransferase, was upregulated in GC. Clinically, elevated METTL3 level was predictive of poor prognosis. Functionally, we found that METTL3 was required for the EMT process in vitro and for metastasis in vivo. Mechanistically, we unveiled the METTL3-mediated m6A modification profile in GC cells for the first time and identified zinc finger MYM-type containing 1 (ZMYM1) as a bona fide m6A target of METTL3. The m6A modification of ZMYM1 mRNA by METTL3 enhanced its stability relying on the “reader” protein HuR (also known as ELAVL1) dependent pathway. In addition, ZMYM1 bound to and mediated the repression of E-cadherin promoter by recruiting the CtBP/LSD1/CoREST complex, thus facilitating the EMT program and metastasis. Conclusions Collectively, our findings indicate the critical role of m6A modification in GC and uncover METTL3/ZMYM1/E-cadherin signaling as a potential therapeutic target in anti-metastatic strategy against GC.


Sign in / Sign up

Export Citation Format

Share Document