Microtubule Orientation During Stomatal Differentiation in Grasses

1989 ◽  
Vol 92 (4) ◽  
pp. 581-594
Author(s):  
SOON-OK CHO ◽  
SUSAN M. WICK

The changing orientation of microtubules (MTs) during formation of the stomatal complex in grasses was observed by immunofluorescence microscopy, beginning with the asymmetrical division of the cell that gives rise to the guard cell mother cell, i.e. the guard cell grandmother cell. The asymmetrically placed preprophase band (PPB) of guard cell grandmother cells and hair cell mother cells is always laid down parallel to the distal end wall even when this wall is oblique to the long axis of the cell. The first step in formation of the PPB of a subsidiary cell mother cell appears to be establishment of an incomplete band of MTs. Whereas the mature PPB forms a curved line in a face view of a subsidiary cell mother cell, in this early stage MTs form fan-shaped arrays that focus on two points along the edge of the subsidiary cell mother cell. Replacement of the transversely oriented interphase microtubule band of the guard cell mother cell with the longitudinally oriented PPB involves several distinctive stages: (1) appearance of MTs directed toward the centre of the periclinal surface along the entire length of the lateral walls. (2) Appearance of another set of MTs along the entire width of both end walls, likewise focused toward the centre of the periclinal surface. Together these two groups of MTs form a cross with broadened tips in face view of the leaf. (3) Disappearance of the first set of MTs, and formation of an increasingly narrow band from the latter at the site of future cytokinesis. Although the anaphase spindles of guard cell grandmother cells, hair cell mother cells and guard cell mother cells are usually diagonally oriented relative to the site occupied previously by the PPB, the line connecting the centres of the spindle poles that are established at prophase is perpendicular to the persisting PPBs. Unlike the situation in certain other hair cells, MTs in leaf hair cells are transversely oriented even when the cells are highly elongated.

1977 ◽  
Vol 55 (23) ◽  
pp. 2873-2878 ◽  
Author(s):  
R. A. Stevens ◽  
E. S. Martin

The development of substomatal sacs and the capacity of the underlying ion-adsorbent sites to accumulate potassium is examined in relation to the ontogeny of the stomatal complex and mature guard cells of the fern, Polypodium vulgare. It is suggested that while the substomatal structures are formed at an early stage of stomatal development, their functional capacity may not be fully realised until the guard cell complex is fully matured.


Author(s):  
Ru Zhang ◽  
Xiao-Peng Liu ◽  
Ya-Juan Li ◽  
Ming Wang ◽  
Lin Chen ◽  
...  

AbstractBackgroundHuman cochlear hair cells cannot spontaneously regenerate after loss. In contrast, those in fish and amphibians have a remarkable ability to regenerate after damaged. Previous studies focus on signaling mechanisms of hair cell regeneration, such as Wnt and Notch signals but seldom on the fact that the beginning of regeneration is accompanied by a large number of inflammatory responses. The detailed role of this inflammation in hair cell regeneration is still unknown. In addition, there is no appropriate behavioral method to quantitatively evaluate the functional recovery of lateral line hair cells after regeneration.ResultsIn this study, we found that when inflammation was suppressed, the regeneration of lateral line hair cells and the recovery of the rheotaxis of the larvae were significantly delayed. Calcium imaging showed that the function of the neuromasts in the inflammation-inhibited group was weaker than that in the non-inflammation-inhibited group at the Early Stage of regeneration, and returned to normal at the Late Stage. Calcium imaging also revealed the cause of the mismatch between the function and quantity during regeneration.ConclusionsOur results, meanwhile, suggest that suppressing inflammation delays hair cell regeneration and functional recovery when hair cells are damaged. This study may provide a new knowledge for how to promote hair cell regeneration and functional recovery in adult mammals.


1984 ◽  
Vol 62 (2) ◽  
pp. 343-359 ◽  
Author(s):  
B. Galatis ◽  
P. Apostolakos ◽  
C. Katsaros

On the leaf epidermis of two Triticum species examined, an intervening cell of a stomatal or a hair row often flanks on one side two guard cell mother cells (GMC's) and usually functions twice as a subsidiary cell mother cell (SMC). In many of these cells and rarely in SMC's corresponding to one GMC, a triangular subsidiary cell (SC) instead of a lens-shaped one is formed. Some of these SC's in median paradermal sections appear triangular in form, while in internal and (or) external ones they exhibit a lenslike shape. In all SMC's investigated in which a triangular SC was expected to be formed, the preprophase microtubule band (PMB) occupied the usual position adjacent to the inducing GMC, except for instances in which the transverse wall of the SMC intersected the lateral wall of the GMC or was opposite its transverse wall. Therefore, during triangular SC formation a limited portion of the junction region of the cell plate with the parent walls is predicted by the PMB. In such cases the premitotic polarizing process in the SMC's and consequently the mutual disposition between the PMB and the mitotic spindle is disturbed. The PMB's of the hair cell mother cells (HMC's) are not so densely grouped as those of the SMC's, sometimes occupying an extensive portion along the walls. They were localized at the expected positions at the polar end of the cells. Only in few instances were atypical PMB's organized. However, the cell plate separating the hair cells (HC's) sometimes diverges and fuses with the parent walls at unpredictable positions far from the PMB cortical zone, except for a small part of it adjacent to one longitudinal anticlinal wall of the HMC. In addition, the preprophase–prophase nucleus often occupied an eccentric position in relation to the PMB or more rarely was situated outside it. Sometimes it exhibited a particular orientation. Moreover, mitotic spindles inclined in relation to the PMB plane were frequently observed. The above phenomena seem to be the result of the interference of a transverse polarizing stimulus with an axial one or of the establishment of an aberrant polarity in the HMC's for unknown reasons. The observations suggest that the spatial inconsistency between PMB and final cell plate arrangement in the cells investigated is an exception to the rule, caused by the disturbance of the mutual disposition and orientation between PMB cortical zone and mitotic spindle; these phenomena follow the disorder of the polarizing process of the cells. The PMB cortical zone seems to be effective only when the cell plate edges reach a critical distance from it.


1969 ◽  
Vol 22 (2) ◽  
pp. 375 ◽  
Author(s):  
JD Pickett-Heaps

The relationship between preprophase microtubules and asymmetrical cell division in the formation of the stomatal complex of C. cyanea was investigated. Polarization of nuclei and other cell organelles adjacent to the guard mother cell occurred in most cases without a preprophase band of microtubules being present; the grouping of preprophase microtubules appeared immediately prior to cell division, and its situation, even during abnormal stomatal development, predicted the plane of future division. The results show that preprophase microtubules cannot be the cytoplasmic agents involved in orienting and positioning the nucleus prior to division. Clear evidence was obtained indicating that preprophase microtubules move intact into the spindle. Some aspects of abnormal stomatal development are discussed, and the results are related to some other work on stomatal differentiation.


Author(s):  
Xiao Lin ◽  
Michael G. K. Brunk ◽  
Pingan Yuanxiang ◽  
Andrew W. Curran ◽  
Enqi Zhang ◽  
...  

AbstractHearing deficits impact on the communication with the external world and severely compromise perception of the surrounding. Deafness can be caused by particular mutations in the neuroplastin (Nptn) gene, which encodes a transmembrane recognition molecule of the immunoglobulin (Ig) superfamily and plasma membrane Calcium ATPase (PMCA) accessory subunit. This study investigates whether the complete absence of neuroplastin or the loss of neuroplastin in the adult after normal development lead to hearing impairment in mice analyzed by behavioral, electrophysiological, and in vivo imaging measurements. Auditory brainstem recordings from adult neuroplastin-deficient mice (Nptn−/−) show that these mice are deaf. With age, hair cells and spiral ganglion cells degenerate in Nptn−/− mice. Adult Nptn−/− mice fail to behaviorally respond to white noise and show reduced baseline blood flow in the auditory cortex (AC) as revealed by single-photon emission computed tomography (SPECT). In adult Nptn−/− mice, tone-evoked cortical activity was not detectable within the primary auditory field (A1) of the AC, although we observed non-persistent tone-like evoked activities in electrophysiological recordings of some young Nptn−/− mice. Conditional ablation of neuroplastin in Nptnlox/loxEmx1Cre mice reveals that behavioral responses to simple tones or white noise do not require neuroplastin expression by central glutamatergic neurons. Loss of neuroplastin from hair cells in adult NptnΔlox/loxPrCreERT mice after normal development is correlated with increased hearing thresholds and only high prepulse intensities result in effective prepulse inhibition (PPI) of the startle response. Furthermore, we show that neuroplastin is required for the expression of PMCA 2 in outer hair cells. This suggests that altered Ca2+ homeostasis underlies the observed hearing impairments and leads to hair cell degeneration. Our results underline the importance of neuroplastin for the development and the maintenance of the auditory system.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Pierre Hakizimana ◽  
Anders Fridberger

AbstractMammalian hearing depends on sound-evoked displacements of the stereocilia of inner hair cells (IHCs), which cause the endogenous mechanoelectrical transducer channels to conduct inward currents of cations including Ca2+. Due to their presumed lack of contacts with the overlaying tectorial membrane (TM), the putative stimulation mechanism for these stereocilia is by means of the viscous drag of the surrounding endolymph. However, despite numerous efforts to characterize the TM by electron microscopy and other techniques, the exact IHC stereocilia-TM relationship remains elusive. Here we show that Ca2+-rich filamentous structures, that we call Ca2+ ducts, connect the TM to the IHC stereocilia to enable mechanical stimulation by the TM while also ensuring the stereocilia access to TM Ca2+. Our results call for a reassessment of the stimulation mechanism for the IHC stereocilia and the TM role in hearing.


1975 ◽  
Vol 66 (4) ◽  
pp. 507-530 ◽  
Author(s):  
D L Alkon

A new technique is described for stimulating hair cells of the Hermissenda statocyst. The preparation and recording apparatus can be rotated at up to 78 rpm while recording intracellular potentials. Hair cells in front of the centrifugal force vector depolarize in response to rotation. Hair cells in back of the centrifugal force vector hypoerpolarize in response to rotation. Mechanisms by which the hair cell generator potential might arise are examined.


Development ◽  
2000 ◽  
Vol 127 (21) ◽  
pp. 4551-4560 ◽  
Author(s):  
J.L. Zheng ◽  
J. Shou ◽  
F. Guillemot ◽  
R. Kageyama ◽  
W.Q. Gao

Hair cell fate determination in the inner ear has been shown to be controlled by specific genes. Recent loss-of-function and gain-of-function experiments have demonstrated that Math1, a mouse homolog of the Drosophila gene atonal, is essential for the production of hair cells. To identify genes that may interact with Math1 and inhibit hair cell differentiation, we have focused on Hes1, a mammalian hairy and enhancer of split homolog, which is a negative regulator of neurogenesis. We report here that targeted deletion of Hes1 leads to formation of supernumerary hair cells in the cochlea and utricle of the inner ear. RT-PCR analysis shows that Hes1 is expressed in inner ear during hair cell differentiation and its expression is maintained in adulthood. In situ hybridization with late embryonic inner ear tissue reveals that Hes1 is expressed in supporting cells, but not hair cells, of the vestibular sensory epithelium. In the cochlea, Hes1 is selectively expressed in the greater epithelial ridge and lesser epithelial ridge regions which are adjacent to inner and outer hair cells. Co-transfection experiments in postnatal rat explant cultures show that overexpression of Hes1 prevents hair cell differentiation induced by Math1. Therefore Hes1 can negatively regulate hair cell differentiation by antagonizing Math1. These results suggest that a balance between Math1 and negative regulators such as Hes1 is crucial for the production of an appropriate number of inner ear hair cells.


1988 ◽  
Vol 91 (1) ◽  
pp. 127-137
Author(s):  
C. H. BUSBY ◽  
B.E. S. GUNNING

Evidence presented in the accompanying paper that plastids function as microtubule (MT)-organizing centres for development of the quadripolar cytoskeleton of pre-meiotic spore mother cells (SMCs) in the moss Funaria hygrometrica is complemented here by observations on the MT system in these cells. Early in meiotic prophase numerous MTs align progressively along the two plastids as they elongate. Concomitant with (and perhaps causal for) plastid rotation, new MT arrays grow from each tip of each plastid to both tips of the other plastid. The ‘along-plastid’ and ‘between-plastid’ arrays ultimately form the edges of a tetrahedron, enclosing the prophase nucleus. MT breakdown at the centre of each edge leaves four cones of MTs, one emanating from each vertex, located at the plastid tips. These partially fuse in between-plastid pairs to give a twisted spindle with broad knife-edge poles oriented at right angles to one another, i.e. a condensed form of the quadripolar precursor. The twist causes the metaphase plate and the subsequent phragmoplast and organelle band to be saddle-shaped, and the daughter nuclei to be elongated perpendicular to one another along the two knife edges. The tetrahedral array returns during interkinesis and again breaks down into four cones of MTs centred on the plastid tips; these, however, now become individual half spindles for the two perpendicularly arranged second division spindles. When meiosis is completed the four haploid nuclei thus come to lie at the vertices of a tetrahedron that was established by MT-mediated plastid positioning during meiotic prophase. The tetrahedral cage of MTs precedes meiosis yet predicts the planes of division, and in these two respects it is the meiotic counterpart of the preprophase band of MTs, which develops before mitosis in most higher plant cells.


1983 ◽  
Vol 92 (1_suppl) ◽  
pp. 3-12 ◽  
Author(s):  
Tomonori Takasaka ◽  
Hideich Shinkawa ◽  
Kozo Watanuki ◽  
Sho Hashimoto ◽  
Kazutomo Kawamoto

The technique and some preliminary results of the application of high-voltage electron microscopy (HVEM) to the study of inner ear morphology in the guinea pig are reported in this paper. The main advantage of HVEM is that sharp images of thicker specimens can be obtained because of the greater penetrating power of high energy electrons. The optimum thickness of the sections examined with an accelerating voltage of 1,000 kV was found to be between 500 to 800 nm. The sections below 500 nm in thickness often had insufficient contrast, while those above 800 nm were rather difficult to interpret due to overlap of images of the organelles. The whole structure of the sensory hairs from the tip to the rootlet was more frequently observed in the 800-nm thick sections. Thus the fine details of the hair attachment to the tectorial membrane as well as the hair rootlet extension into the cuticular plate could be thoroughly studied in the HVEM. In specimens fixed in aldehyde containing 2% tannic acid, the attachment of the tips of the outer hair cell stereocilia to the tectorial membrane was observed. For the inner hair cells, however, the tips of the hairs were separated from the undersurface of the tectorial membrane. The majority of the rootlets of the outer hair cells terminated at the midportion of the cuticular plate, while most of the inner hair cell rootlets traversed the entire width of the cuticular plate and extended into the apical cytoplasm. These differences in ultrastructural appearance may indicate that the two kinds of hair cells play different roles in the acoustic transduction process. The three-dimensional arrangement of the nerve endings on the hair cells was also studied by the serial thick-sectioning technique in the HVEM. In general, an entire arrangement of the nerve endings was almost completely cut in less than ten 800-nm thick sections instead of the 50- to 100-ultrathin (ie, less than 100 nm) conventional sections for transmission electron microscopy. The present study confirms an earlier report that the first row outer hair cells in the third cochlear turn are innervated by nearly equal numbers of efferent and afferent endings, the average number being nine.


Sign in / Sign up

Export Citation Format

Share Document