scholarly journals Task-dependent vocal adjustments to optimize biosonar-based information acquisition

2020 ◽  
Vol 224 (1) ◽  
pp. jeb234815
Author(s):  
Daniel Lewanzik ◽  
Holger R. Goerlitz

ABSTRACTAnimals need to acquire adequate and sufficient information to guide movements, yet information acquisition and processing are costly. Animals thus face a trade-off between gathering too little and too much information and, accordingly, actively adapt sensory input through motor control. Echolocating animals provide a unique opportunity to study the dynamics of adaptive sensing in naturally behaving animals, as every change in the outgoing echolocation signal directly affects information acquisition and the perception of the dynamic acoustic scene. Here, we investigated the flexibility with which bats dynamically adapt information acquisition depending on a task. We recorded the echolocation signals of wild-caught Western barbastelle bats (Barbastella barbastellus) while they were flying through an opening, drinking on the wing, landing on a wall and capturing prey. We show that the echolocation signal sequences during target approach differed in a task-dependent manner; bats started the target approach earlier and increased the information update rate more when the task became increasingly difficult, and bats also adjusted the dynamics of call duration shortening and peak frequency shifts accordingly. These task-specific differences existed from the onset of object approach, implying that bats plan their sensory-motor programme for object approach exclusively based on information received from search call echoes. We provide insight into how echolocating animals deal with the constraints they face when sequentially sampling the world through sound by adjusting acoustic information flow from slow to extremely fast in a highly dynamic manner. Our results further highlight the paramount importance of high behavioural flexibility for acquiring information.

2020 ◽  
Author(s):  
Daniel Lewanzik ◽  
Holger R. Goerlitz

AbstractAnimals need to acquire adequate and sufficient information to guide movements, yet information acquisition and processing is costly. Animals thus face a trade-off between gathering too little and too much information and, accordingly, actively adapt sensory input through motor control. Echolocating animals provide the unique opportunity to study the dynamics of adaptive sensing in naturally behaving animals, since every change in the outgoing echolocation signal directly affects information acquisition and the perception of the dynamic acoustic scene. Here we investigated the flexibility with which bats dynamically adapt information acquisition depending on a task. We recorded the echolocation signals of wild-caught Western barbastelle bats (Barbastella barbastellus) while flying through an opening, drinking on the wing, landing on a wall, and capturing prey. We show that the echolocation signal sequences during target approach differed in a task-dependent manner; bats started target approach earlier and increased information update rate more when the task became increasingly difficult, and bats also adjusted dynamics of call duration shortening and peak frequency shifts accordingly. These task-specific differences existed from the onset of object approach, implying that bats plan their sensory-motor program for object approach exclusively based on information received from search call echoes. We provide insights into how echolocating animals deal with the constraints they face when sequentially sampling the world through sound by adjusting acoustic information flow from slow to extremely fast in a highly dynamic manner. Our results further highlight the paramount importance of high behavioural flexibility for acquiring information.Summary statementHaving the right information for a specific job is crucial. Echolocating bats flexibly and independently adjust different call parameters to match the sensory-motor challenges of four different tasks.


2017 ◽  
Vol 217 (2) ◽  
pp. 779-793 ◽  
Author(s):  
Rebecca C. Adikes ◽  
Ryan A. Hallett ◽  
Brian F. Saway ◽  
Brian Kuhlman ◽  
Kevin C. Slep

We developed a novel optogenetic tool, SxIP–improved light-inducible dimer (iLID), to facilitate the reversible recruitment of factors to microtubule (MT) plus ends in an end-binding protein–dependent manner using blue light. We show that SxIP-iLID can track MT plus ends and recruit tgRFP-SspB upon blue light activation. We used this system to investigate the effects of cross-linking MT plus ends and F-actin in Drosophila melanogaster S2 cells to gain insight into spectraplakin function and mechanism. We show that SxIP-iLID can be used to temporally recruit an F-actin binding domain to MT plus ends and cross-link the MT and F-actin networks. Cross-linking decreases MT growth velocities and generates a peripheral MT exclusion zone. SxIP-iLID facilitates the general recruitment of specific factors to MT plus ends with temporal control enabling researchers to systematically regulate MT plus end dynamics and probe MT plus end function in many biological processes.


2013 ◽  
Vol 210 (9) ◽  
pp. 1695-1710 ◽  
Author(s):  
Tyler R. Simpson ◽  
Fubin Li ◽  
Welby Montalvo-Ortiz ◽  
Manuel A. Sepulveda ◽  
Katharina Bergerhoff ◽  
...  

Treatment with monoclonal antibody specific for cytotoxic T lymphocyte–associated antigen 4 (CTLA-4), an inhibitory receptor expressed by T lymphocytes, has emerged as an effective therapy for the treatment of metastatic melanoma. Although subject to debate, current models favor a mechanism of activity involving blockade of the inhibitory activity of CTLA-4 on both effector (T eff) and regulatory (T reg) T cells, resulting in enhanced antitumor effector T cell activity capable of inducing tumor regression. We demonstrate, however, that the activity of anti–CTLA-4 antibody on the T reg cell compartment is mediated via selective depletion of T reg cells within tumor lesions. Importantly, T reg cell depletion is dependent on the presence of Fcγ receptor–expressing macrophages within the tumor microenvironment, indicating that T reg cells are depleted in trans in a context-dependent manner. Our results reveal further mechanistic insight into the activity of anti-CTLA-4–based cancer immunotherapy, and illustrate the importance of specific features of the local tumor environment on the final outcome of antibody-based immunomodulatory therapies.


2020 ◽  
Vol 117 (32) ◽  
pp. 19528-19537
Author(s):  
Yunlong Li ◽  
Jamie H. Corro ◽  
Christopher D. Palmer ◽  
Anil K. Ojha

Zinc starvation in mycobacteria leads to remodeling of ribosomes, in which multiple ribosomal (r-) proteins containing the zinc-binding CXXC motif are replaced by their motif-free paralogues, collectively called C− r-proteins. We previously reported that the 70S C− ribosome is exclusively targeted for hibernation by mycobacterial-specific protein Y (Mpy), which binds to the decoding center and stabilizes the ribosome in an inactive and drug-resistant state. In this study, we delineate the conditions for ribosome remodeling and hibernation and provide further insight into how zinc depletion induces Mpy recruitment to C− ribosomes. Specifically, we show that ribosome hibernation in a batch culture is induced at an approximately two-fold lower cellular zinc concentration than remodeling. We further identify a growth phase in which the C− ribosome remains active, while its hibernation is inhibited by the caseinolytic protease (Clp) system in a zinc-dependent manner. The Clp protease system destabilizes a zinc-bound form of Mpy recruitment factor (Mrf), which is stabilized upon further depletion of zinc, presumably in a zinc-free form. Stabilized Mrf binds to the 30S subunit and recruits Mpy to the ribosome. Replenishment of zinc to cells harboring hibernating ribosomes restores Mrf instability and dissociates Mpy from the ribosome. Finally, we demonstrate zinc-responsive binding of Mpy to ribosomes inMycobacterium tuberculosis(Mtb) and show Mpy-dependent antibiotic tolerance of Mtb in mouse lungs. Together, we propose that ribosome hibernation is a specific and conserved response to zinc depletion in both environmental and pathogenic mycobacteria.


2019 ◽  
Vol 14 (7) ◽  
pp. 759-768
Author(s):  
Caroline Schlüter ◽  
Larissa Arning ◽  
Christoph Fraenz ◽  
Patrick Friedrich ◽  
Marlies Pinnow ◽  
...  

Abstract Although procrastination is a widespread phenomenon with significant influence on our personal and professional life, its genetic foundation is somewhat unknown. An important factor that influences our ability to tackle specific goals directly instead of putting them off is our ability to initiate cognitive, motivational and emotional control mechanisms, so-called metacontrol. These metacontrol mechanisms have been frequently related to dopaminergic signaling. To gain deeper insight into the genetic components of procrastination, we examined whether genetically induced differences in the dopaminergic system are associated with interindividual differences in trait-like procrastination, measured as decision-related action control (AOD). Analyzing the data of 278 healthy adults, we found a sex-dependent effect of TH genotype on AOD. Interestingly, only in women, T-allele carriers showed lower AOD values and were therefore more likely to procrastinate. Additionally, we investigated whether differences in the morphology and functional connectivity of the amygdala that were previously associated with AOD happen to be related to differences in the TH genotype and thus to differences in the dopaminergic system. However, there was no significant amygdala volume or connectivity difference between the TH genotype groups. Therefore, this study is the first to suggest that genetic, anatomical and functional differences affect trait-like procrastination independently.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Makoto Kinoshita ◽  
Yuji Nakatsuji

Recent advances in the field of neuromyelitis optica (NMO) research provided convincing evidence that anti-AQP4 antibody (AQP4-Ab) not only serves as a highly specific disease marker, but also plays an essential role in the pathogenesis of the disease. Although it is now widely recognized that AQP4-Ab induces astrocytic necrosis in a complement-dependent manner, additional triggers are also suspected as a prerequisite for the development of the disease. Unraveling these unresolved aspects of the disease will provide substantial insight into still controversial issues in the pathogenesis of NMO.


2020 ◽  
Author(s):  
Soyoung Park ◽  
Jozef Dingemans ◽  
Madison Gowett ◽  
Karin Sauer

<p>In <em>Pseudomonas aeruginosa</em>, the orphan two-component sensor SagS contributes to both, the transition to biofilm formation and to biofilm cells gaining their heightened tolerance to antimicrobials. However, little is known about the identity of the signals or conditions sensed by SagS to induce the switch to the sessile, drug tolerant mode of growth. Using a modified Biolog phenotype assay to screen for compounds that modulate attachment in a SagS-dependent manner, we identified glucose-6-phosphate to enhance attachment in a manner dependent on the glucose-6-phosphate concentration and SagS. The stimulatory effect was not limited to the attachment as glucose-6-phosphate likewise enhanced biofilm formation. We show that exposure to glucose-6-phosphate results in decreased swarming motility but increased cellular c-di-GMP levels in biofilms. Genetic analysis indicated that the diguanylate cyclase NicD is an activator of biofilm formation and is not only required for enhanced biofilm formation in response to glucose-6-phosphate but also interacts with SagS. Our findings indicate glucose-6-phosphate to likely mimic a signal or conditions sensed by SagS to activate its motile-sessile switch function. Additionally, our findings provide new insight into the interfaces between the ligand-mediated TCS signaling pathway and c-di-GMP levels.</p>


2008 ◽  
Vol 190 (10) ◽  
pp. 3526-3537 ◽  
Author(s):  
Seth R. Goldman ◽  
Yupeng Tu ◽  
Marcia B. Goldberg

ABSTRACT Shigella flexneri, a gram-negative enteric pathogen, is unusual in that it contains two nonredundant paralogous genes that encode the myristoyl transferase MsbB (LpxM) that catalyzes the final step in the synthesis of the lipid A moiety of lipopolysaccharide. MsbB1 is encoded on the chromosome, and MsbB2 is encoded on the large virulence plasmid present in all pathogenic shigellae. We demonstrate that myristoyl transferase activity due to MsbB2 is detected in limited magnesium medium, but not in replete magnesium medium, whereas that due to MsbB1 is detected under both conditions. MsbB2 increases overall hexa-acylation of lipid A under limited magnesium conditions. Regulation of MsbB2 by magnesium occurs at the level of transcription and is dependent on the conserved magnesium-inducible PhoPQ two-component regulatory pathway. Direct hexanucleotide repeats within the promoter upstream of msbB2 were identified as a putative PhoP binding site, and mutations within the repeats led to diminished PhoP-dependent expression of a transcriptional fusion of lacZ to this promoter. Thus, the virulence plasmid-encoded paralog of msbB is induced under limited magnesium in a PhoPQ-dependent manner. PhoPQ regulates the response of many Enterobacteriaceae to environmental signals, which include modifications of lipid A that confer increased resistance of the organism to stressful environments and antimicrobial peptides. The findings reported here are the first example of gene duplication in which one paralog has selectively acquired the mechanism for differential regulation by PhoPQ. Our findings provide molecular insight into the mechanisms by which each of the two MsbB proteins of S. flexneri likely contributes to pathogenesis.


Reproduction ◽  
2012 ◽  
Vol 143 (6) ◽  
pp. 815-823 ◽  
Author(s):  
Bernardo G Gasperin ◽  
Rogério Ferreira ◽  
Monique T Rovani ◽  
Joabel T Santos ◽  
José Buratini ◽  
...  

Fibroblast growth factors (FGFs) are involved in paracrine control of follicle development. It was previously demonstrated that FGF10 decreases estradiol (E2) secretion in granulosa cell culture and that theca cell FGF10 mRNA expression is decreased in healthy follicles from abattoir ovaries. The main objectives of this study were to evaluate FGF10 and FGFR2b mRNA expression during follicular development in vivo, to evaluate the effect of FGF10 on follicle growth using Bos taurus taurus cows as a model, and to gain more insight into the mechanisms through which FGF10 inhibits steroidogenesis. Messenger RNA encoding both FGF10 and FGFR2b (main FGF10 receptor) was significantly more expressed in subordinate follicles (SFs) than in dominant follicles (DFs). The intrafollicular injection of FGF10 into the largest growing follicle at 7–8 mm in diameter interrupted the DF growth in a dose-dependent manner (11±0.4, 8.3±1 and 5.9±0.3 mm for 0, 0.1, and 1 μg/ml FGF10, respectively, at 72 h after treatment; P<0.05). In a third experiment, follicles were obtained 24 h after FGF10 (1 μg/ml) or PBS treatment through ovariectomy. In theca cells, FGF10 treatment did not affect mRNA encoding steroidogenic enzymes, LHCGR and IGFBPs, but significantly upregulated FGF10 mRNA expression. The expression of CYP19A1 mRNA in granulosa cells was downregulated by FGF10 treatment, which was accompanied by a 50-fold decrease in E2 production, and decreased cyclin D2 mRNA. These results have shown that FGF10 and its receptor FGFR2b are more expressed in SFs and provide solid in vivo evidence that FGF10 acts as an important regulator of follicular growth in cattle.


2012 ◽  
Vol 33 (3) ◽  
pp. 498-513 ◽  
Author(s):  
R. Montgomery Gill ◽  
Timothy V. Gabor ◽  
Amber L. Couzens ◽  
Michael P. Scheid

ABSTRACTCell division control protein A7 (CDCA7) is a recently identified target of MYC-dependent transcriptional regulation. We have discovered that CDCA7 associates with MYC and that this association is modulated in a phosphorylation-dependent manner. The prosurvival kinase AKT phosphorylates CDCA7 at threonine 163, promoting binding to 14-3-3, dissociation from MYC, and sequestration to the cytoplasm. Upon serum withdrawal, induction of CDCA7 expression in the presence of MYC sensitized cells to apoptosis, whereas CDCA7 knockdown reduced MYC-dependent apoptosis. The transformation of fibroblasts by MYC was reduced by coexpression of CDCA7, while the non-MYC-interacting protein Δ(156–187)-CDCA7 largely inhibited MYC-induced transformation. These studies provide insight into a new mechanism by which AKT signaling to CDCA7 could alter MYC-dependent growth and transformation, contributing to tumorigenesis.


Sign in / Sign up

Export Citation Format

Share Document