A theoretical investigation of two possible modifications to reduce pollutant emissions from a diesel engine

Author(s):  
Z Gao ◽  
W Schreiber

The goal of the study is to present and to evaluate theoretically two strategies for reducing simultaneously both particulate and NOx emission from a compression-ignited, direct injection engine. The emission reduction strategies to be considered here include auxiliary exhaust gas injection (AEGI) and a combination of exhaust gas recirculation (EGR) and AEGI. The auxiliary gas injection (AGI) process consists of the injection of a gas directly into the combustion chamber of a diesel engine during the combustion stroke to enhance fluid mixing. Increased mixing during the combustion process can lower the emission of both soot and NOx. AEGI is a process whereby exhaust gas is the injected gas used in AGI. To predict the effect of AEGI on diesel engine combustion and emission, a gas injection model was developed and used with a multidimensional simulation computer code, KIVA. The program is used to evaluate the combined effect of AEGI and EGR on pollutant emissions in a Caterpillar diesel engine. The results demonstrate that the injection timing of AEGI affects soot emissions quite differently to NOx emissions. A combination of EGR and AEGI is found to be more effective than AEGI alone for the maximum simultaneous reduction of soot and NOx emissions. It is predicted that the EGR and AEGI combination can reduce both particulate and NOx emissions by almost 50 per cent over baseline.

Author(s):  
Raouf Mobasheri ◽  
Zhijun Peng

High-Speed Direct Injection (HSDI) diesel engines are increasingly used in automotive applications due to superior fuel economy. An advanced CFD simulation has been carried out to analyze the effect of injection timing on combustion process and emission characteristics in a four valves 2.0L Ford diesel engine. The calculation was performed from intake valve closing (IVC) to exhaust valve opening (EVO) at constant speed of 1600 rpm. Since the work was concentrated on the spray injection, mixture formation and combustion process, only a 60° sector mesh was employed for the calculations. For combustion modeling, an improved version of the Coherent Flame Model (ECFM-3Z) has been applied accompanied with advanced models for emission modeling. The results of simulation were compared against experimental data. Good agreement of calculated and measured in-cylinder pressure trace and pollutant formation trends were observed for all investigated operating points. In addition, the results showed that the current CFD model can be applied as a beneficial tool for analyzing the parameters of the diesel combustion under HSDI operating condition.


2018 ◽  
Vol 234 ◽  
pp. 03007
Author(s):  
Plamen Punov ◽  
Tsvetomir Gechev ◽  
Svetoslav Mihalkov ◽  
Pierre Podevin ◽  
Dalibor Barta

The pilot injection strategy is a widely used approach for reducing the noise of the combustion process in direct injection diesel engines. In the last generation of automotive diesel engines up to several pilot injections could occur to better control the rate of heat release (ROHR) in the cylinder as well as the pollutant formation. However, determination of the timing and duration for each pilot injection needs to be precisely optimised. In this paper an experimental study of the pilot injection strategy was conducted on a direct injection diesel engine. Single and double pilot injection strategy was studied. The engine rated power is 100 kW at 4000 rpm while the rated torque is 320 Nm at 2000 rpm. An engine operating point determined by the rotation speed of 1400 rpm and torque of 100 Nm was chosen. The pilot and pre-injection timing was widely varied in order to study the influence on the combustion process as well as on the fuel consumption.


2002 ◽  
Vol 125 (1) ◽  
pp. 351-357 ◽  
Author(s):  
Y. Kidoguchi ◽  
M. Sanda ◽  
K. Miwa

Effects of combustion chamber geometry and initial mixture distribution on the combustion process were investigated in a direct-injection diesel engine. In the engine experiment, a high squish combustion chamber with a squish lip could reduce both NOx and particulate emissions with retarded injection timing. According to the results of CFD computation and phenomenological modeling, the high squish combustion chamber with a central pip is effective to keep the combusting mixture under the squish lip until the end of combustion and the combustion region forms rich and highly turbulent atmosphere. This kind of mixture distribution tends to reduce initial burning, resulting in restraint of NOx emission while keeping low particulate emission.


2002 ◽  
Vol 124 (3) ◽  
pp. 636-644 ◽  
Author(s):  
J. M. Desantes ◽  
J. V. Pastor ◽  
J. Arre`gle ◽  
S. A. Molina

To fulfill the commitments of future pollutant regulations, current development of direct injection (DI) Diesel engines requires to improve knowledge on the injection/combustion process and the effect of the injection parameters and engine operation conditions upon the spray and flame characteristics and how they affect engine performance and pollutant emissions. In order to improve comprehension of the phenomena inherent to Diesel combustion, a deep experimental study has been performed in a single-cylinder engine with the main characteristics of a six-cylinder engine passing the EURO III legislation. Some representative points of the 13-mode engine test cycle have been considered modifying the nominal values of injection pressure, injection load, intake pressure, engine speed, and injection timing. The study combines performance and emissions experimental measurements together with heat release law (HRL) analysis and high-speed visualization. Controlling parameters for BSFC, NOx, and soot emissions are identified in the last part of the paper.


2019 ◽  
Vol 19 (4) ◽  
pp. 337-357
Author(s):  
Haroun A.K. Shahad ◽  
Emad D. Abood

Hydrogen is a clean fuel for internal combustion engines since it produces only water vapor and nitrogen oxides when it burns. In this research, hydrogen is used as a blending fuel with diesel to reduce pollutants emission and to improve performance. It is inducted in the inlet manifold, of a single cylinder, four stroke, direct injection, water cold diesel engine, type (Kirloskar). Hydrogen blending is done on energy replacement basis. A special electronic unit is designed and fabricated to control hydrogen blending ratio. The maximum achieved ratio is 30% of input energy and beyond that engine operation becomes unsatisfactory when the air temperature is 20 oC and injection timing of -35o CA which represent the first part of this work. Inlet air heating system is built and added in the experimental work. The heating system allows to increase the air temperature up to 100 oC. A heating of air to 60 oC with injection timing of -30o CA and 55% of hydrogen blending is executed in the second part of this study. Tests are done with 17.5 compression ratio and 1500 rpm. The brake specific fuel consumption is reduced by 29% and 46%, the engine thermal efficiency is increased with 16% and 21% for the 1st and 2nd part respectively. The pollutant emissions of carbon oxides, UHC, and smoke opacity are dramatically decreased by 19.5%, 13%, and 45% respectively for the 1st part and 41%, 38% and 65.6% for the 2nd part while NOx emission is increased by 10% and 25% for the 1st and 2nd part respectively.


2014 ◽  
Vol 21 (3) ◽  
pp. 86-94 ◽  
Author(s):  
Zdzisław Stelmasiak

Abstract This paper concerns analysis of possible use of alcohols for the feeding of self - ignition and spark-ignition engines operating in a dual- fuel mode, i.e. simultaneously combusting alcohol and diesel oil or alcohol and petrol. Issues associated with the requirements for application of bio-fuels were presented with taking into account National Index Targets, bio-ethanol production methods and dynamics of its production worldwide and in Poland. Te considerations are illustrated by results of the tests on spark- ignition and self- ignition engines fed with two fuels: petrol and methanol or diesel oil and methanol, respectively. Te tests were carried out on a 1100 MPI Fiat four- cylinder engine with multi-point injection and a prototype collector fitted with additional injectors in each cylinder. Te other tested engine was a SW 680 six- cylinder direct- injection diesel engine. Influence of a methanol addition on basic operational parameters of the engines and exhaust gas toxicity were analyzed. Te tests showed a favourable influence of methanol on combustion process of traditional fuels and on some operational parameters of engines. An addition of methanol resulted in a distinct rise of total efficiency of both types of engines at maintained output parameters (maximum power and torque). In the same time a radical drop in content of hydrocarbons and nitrogen oxides in exhaust gas was observed at high shares of methanol in feeding dose of ZI (petrol) engine, and 2-3 fold lower smokiness in case of ZS (diesel) engine. Among unfavourable phenomena, a rather insignificant rise of CO and NOx content for ZI engine, and THC and NOx - for ZS engine, should be numbered. It requires to carry out further research on optimum control parameters of the engines. Conclusions drawn from this work may be used for implementation of bio-fuels to feeding the combustion engines.


2021 ◽  
pp. 146808742110139
Author(s):  
José Galindo ◽  
Vicente Dolz ◽  
Javier Monsalve-Serrano ◽  
Miguel Angel Bernal ◽  
Laurent Odillard

Internal combustion engines working at cold conditions lead to the production of excessive pollutant emissions levels. The use of the exhaust gas recirculation could be necessary to reduce the nitrogen oxides emissions, even at these conditions. This paper evaluates the impact of using the high-pressure exhaust gas recirculation strategy while the diesel particulate filter is under active regeneration mode on a Euro 6 turbocharged diesel engine running at low ambient temperature (−7°C). This strategy is evaluated under 40 h of operation, 20 of them using the two systems in combination. The results show that the activation of the high-pressure exhaust gas recirculation during the particulate filter regeneration process leads to a 50% nitrogen oxides emissions reduction with respect to a reference case without exhaust gas recirculation. Moreover, the modification of some engine parameters compared to the base calibration, as the exhaust gas recirculation rate, the main fuel injection timing and the post injection quantity, allows to optimize this strategy by reducing the carbon monoxide emissions up to 60%. Regarding the hydrocarbons emissions and fuel consumption, a small advantage could be observed using this strategy. However, the activation of the high-pressure exhaust gas recirculation at low temperatures can produce fouling deposits and condensation on the engine components (valve, cooler, intake manifold, etc.) and can contribute to reach saturation conditions on the particulate filter. For these reasons, the regeneration efficiency is followed during the experiments through the filter status, concluding that the use of low high-pressure exhaust gas recirculation rates in combination with the regeneration mode also allows to clean the soot particles of the particulate filter. These soot depositions are visualized and presented at the end of this work with a brief analysis of the soot characteristics and a quantitative estimation of the total soot volume produced during the experimental campaign.


Author(s):  
R. Senthil ◽  
R. Silambarasan ◽  
G. Pranesh

The present investigation is to analyse the influence of boost pressure and injection pressure on combustion process and emissions for various engine loads and speeds. A single cylinder diesel engine that is equipped with a manual direct injection system is considered for the experimental work. Emissions such as HC, NOx and brake specific fuel consumption were monitored using gas analyzer. A turbocharger and dilution tunnel is designed such a way that a boost pressure will be created from the compressor driven turbine using engine exhaust. The compressed air was mixed with the exhaust gas in the dilution tunnel to oxidize the hydrogen and carbon into water vapour and carbon dioxide.


2000 ◽  
Author(s):  
Zhiming Gao ◽  
Will Schreiber

Abstract A phenomenological model based on the use of multiple zones is described and compared with other experimental and analytical work. This multizone model is used to examine the effect on emissions of increasing the oxygen concentration in the intake air of a compression-ignition, direct-injection engine. It is concluded that O2-enriched air could only be useful if combined with other modifications such as auxiliary gas injection, split injection, and exhaust gas recirculation.


2008 ◽  
Vol 12 (1) ◽  
pp. 103-114 ◽  
Author(s):  
Dzevad Bibic ◽  
Ivan Filipovic ◽  
Ales Hribernik ◽  
Boran Pikula

An ignition delay is a very complex process which depends on a great number of parameters. In practice, definition of the ignition delay is based on the use of correlation expressions. However, the correlation expressions have very often limited application field. This paper presents a new correlation which has been developed during the research project on the direct injection M-type diesel engine using both the diesel and biodiesel fuel, as well as different values of a static injection timing. A dynamic start of injection, as well as the ignition delay, is defined in two ways. The first approach is based on measurement of a needle lift, while the second is based on measurement of a fuel pressure before the injector. The latter approach requires calculation of pressure signals delay through the fuel injection system and the variation of a static advance injection angle changing. The start of a combustion and the end of the ignition delay is defined on the basis of measurements of an in-cylinder pressure and its point of separation from a skip-fire pressure trace. The developed correlation gives better prediction of the ignition delay definition for the M-type direct injection diesel engine in the case of diesel and biodiesel fuel use when compared with the classic expression by the other authors available in the literature.


Sign in / Sign up

Export Citation Format

Share Document