scholarly journals EFFECT OF OPERATING CONDITIONS ON PERFORMANCE AND EMISSIONS OF A DIESEL ENGINE OPERATED WITH DIESEL-HYDROGEN BLEND

2019 ◽  
Vol 19 (4) ◽  
pp. 337-357
Author(s):  
Haroun A.K. Shahad ◽  
Emad D. Abood

Hydrogen is a clean fuel for internal combustion engines since it produces only water vapor and nitrogen oxides when it burns. In this research, hydrogen is used as a blending fuel with diesel to reduce pollutants emission and to improve performance. It is inducted in the inlet manifold, of a single cylinder, four stroke, direct injection, water cold diesel engine, type (Kirloskar). Hydrogen blending is done on energy replacement basis. A special electronic unit is designed and fabricated to control hydrogen blending ratio. The maximum achieved ratio is 30% of input energy and beyond that engine operation becomes unsatisfactory when the air temperature is 20 oC and injection timing of -35o CA which represent the first part of this work. Inlet air heating system is built and added in the experimental work. The heating system allows to increase the air temperature up to 100 oC. A heating of air to 60 oC with injection timing of -30o CA and 55% of hydrogen blending is executed in the second part of this study. Tests are done with 17.5 compression ratio and 1500 rpm. The brake specific fuel consumption is reduced by 29% and 46%, the engine thermal efficiency is increased with 16% and 21% for the 1st and 2nd part respectively. The pollutant emissions of carbon oxides, UHC, and smoke opacity are dramatically decreased by 19.5%, 13%, and 45% respectively for the 1st part and 41%, 38% and 65.6% for the 2nd part while NOx emission is increased by 10% and 25% for the 1st and 2nd part respectively.

Author(s):  
Mustafa Canakci ◽  
Eric Hruby ◽  
Rolf D. Reitz

Homogeneous charge compression ignition (HCCI) is receiving attention as a new low emission engine concept. Little is known about the optimal operating conditions for this engine operation mode. Combustion at homogeneous, low equivalence ratio conditions results in modest temperature combustion products, containing very low concentrations of NOx and PM as well as providing high thermal efficiency. However, this combustion mode can produce higher HC and CO emissions than those of conventional engines. An electronically controlled Caterpillar single-cylinder oil test engine (SCOTE), originally designed for heavy-duty diesel applications, was converted to a HCCI direct-injection gasoline engine. The engine features an electronically controlled low-pressure common rail injector with a 60°-spray angle that is capable of multiple injections. The use of double injection was explored for emission control, and the engine was optimized using fully-automated experiments and a micro-genetic algorithm (μGA) optimization code. The variables changed during the optimization include the intake air temperature, start of injection timing, and split injection parameters (percent mass of the fuel in each injection, dwell between the pulses). The engine performance and emissions were determined at 700 rev/min with a constant fuel flow rate at 10 MPa fuel injection pressure. The results show that significant emissions reductions are possible with the use of optimal injection strategies.


Author(s):  
T-G Fang ◽  
R E Coverdill ◽  
C-F F Lee ◽  
R A White

An optically accessible high-speed direct-injection diesel engine was used to study the effects of injection angles on low-sooting combustion. A digital high-speed camera was employed to capture the entire cycle combustion and spray evolution processes under seven operating conditions including post-top-dead centre (TDC) injection and pre-TDC injection strategies. The nitrogen oxide (NO x) emissions were also measured in the exhaust pipe. In-cylinder pressure data and heat release rate calculations were conducted. All the cases show premixed combustion features. For post-TDC injection cases, a large amount of fuel deposition is seen for a narrower-injection-angle tip, i.e. the 70° tip, and ignition is observed near the injector tip in the centre of the bowl, while for a wider-injection-angle tip, namely a 110° tip, ignition occurs near the spray tip in the vicinity of the bowl wall. The combustion flame is near the bowl wall and at the central region of the bowl for the 70° tip. However, the flame is more distributed and centralized for the 110° tip. Longer spray penetration is found for the pre-TDC injection timing cases. Liquid fuel impinges on the bowl wall or on the piston top and a fuel film is formed. Ignition for all the pre-TDC injection cases occur in a distributed way in the piston bowl. Two different combustion modes are observed for the pre-TDC injection cases including a homogeneous bulky combustion flame at earlier crank angles and a heterogeneous film combustion mode with luminous sooting flame at later crank angles. In terms of soot emissions, NO x emissions, and fuel efficiency, results show that the late post-TDC injection strategy gives the best performance.


Author(s):  
M Capobianco

The paper presents the latest results of a wide investigation performed at the University of Genoa on the control of automotive direct injection (DI) diesel engines. A dedicated procedure was developed which enables analysis of the behaviour of engine operating parameters as a function of two control variables with a limited amount of experimental information and the definition of proper control strategies. A first application of the procedure is presented in the paper with reference to a typical turbocharged DI diesel engine for automotive applications. The exhaust gas recirculation (EGR) rate and the position of the turbocharger waste-gate regulating valve were assumed as control variables and the behaviour of the most important engine parameters was analysed in a wide range for 15 steady state operating conditions related to the European driving cycle. Particular attention was paid to the most significant pollutant emissions and to the exhaust boundary conditions for the application of a low temperature lean de-NOx catalyst. Two different control strategies were also developed by which the catalyst conversion efficiency and the NOx engine tail pipe emission were individually optimized, taking account of some operating limits for specific parameters.


2021 ◽  
Vol 11 (13) ◽  
pp. 6035
Author(s):  
Luigi Teodosio ◽  
Luca Marchitto ◽  
Cinzia Tornatore ◽  
Fabio Bozza ◽  
Gerardo Valentino

Combustion stability, engine efficiency and emissions in a multi-cylinder spark-ignition internal combustion engines can be improved through the advanced control and optimization of individual cylinder operation. In this work, experimental and numerical analyses were carried out on a twin-cylinder turbocharged port fuel injection (PFI) spark-ignition engine to evaluate the influence of cylinder-by-cylinder variation on performance and pollutant emissions. In a first stage, experimental tests are performed on the engine at different speed/load points and exhaust gas recirculation (EGR) rates, covering operating conditions typical of Worldwide harmonized Light-duty vehicles Test Cycle (WLTC). Measurements highlighted relevant differences in combustion evolution between cylinders, mainly due to non-uniform effective in-cylinder air/fuel ratio. Experimental data are utilized to validate a one-dimensional (1D) engine model, enhanced with user-defined sub-models of turbulence, combustion, heat transfer and noxious emissions. The model shows a satisfactory accuracy in reproducing the combustion evolution in each cylinder and the temperature of exhaust gases at turbine inlet. The pollutant species (HC, CO and NOx) predicted by the model show a good agreement with the ones measured at engine exhaust. Furthermore, the impact of cylinder-by-cylinder variation on gaseous emissions is also satisfactorily reproduced. The novel contribution of present work mainly consists in the extended numerical/experimental analysis on the effects of cylinder-by-cylinder variation on performance and emissions of spark-ignition engines. The proposed numerical methodology represents a valuable tool to support the engine design and calibration, with the aim to improve both performance and emissions.


Author(s):  
N Sung ◽  
S Lee ◽  
H Kim ◽  
B Kim

A numerical cycle model is developed to investigate the soot production in a direct injection (DI) diesel engine. The Surovikin and Fusco models for soot formation and the Nagle model for soot oxidation are used with the KIVA-3V code. In the Surovikin model, carbon radicals are produced from pyrolysis of fuel and soot particles grow through collisions with fuel molecules. In the Fusco model, the carbon radicals and acetylene are formed from pyrolysis of fuel. There, acetylene works for the growth of soot particles. From investigation of the e. ects of the operating conditions on soot formation and oxidation, it is found that soot formation is mainly governed by fuel concentration and combustion temperature and soot oxidation is more dependent on combustion temperature. The air-fuel ratio a. ects soot formation more than injection timing. For a stoichiometric mixture ratio, soot formation is increased because of the high combustion temperature.


2002 ◽  
Vol 124 (3) ◽  
pp. 636-644 ◽  
Author(s):  
J. M. Desantes ◽  
J. V. Pastor ◽  
J. Arre`gle ◽  
S. A. Molina

To fulfill the commitments of future pollutant regulations, current development of direct injection (DI) Diesel engines requires to improve knowledge on the injection/combustion process and the effect of the injection parameters and engine operation conditions upon the spray and flame characteristics and how they affect engine performance and pollutant emissions. In order to improve comprehension of the phenomena inherent to Diesel combustion, a deep experimental study has been performed in a single-cylinder engine with the main characteristics of a six-cylinder engine passing the EURO III legislation. Some representative points of the 13-mode engine test cycle have been considered modifying the nominal values of injection pressure, injection load, intake pressure, engine speed, and injection timing. The study combines performance and emissions experimental measurements together with heat release law (HRL) analysis and high-speed visualization. Controlling parameters for BSFC, NOx, and soot emissions are identified in the last part of the paper.


2020 ◽  
Vol 01 (03) ◽  
pp. 101-110
Author(s):  
Kazi Mostafijur Rahman ◽  
Zobair Ahmed

The performance of diesel engine highly depends on atomization, vaporization and mixing of fuel with air. These factors are strongly influenced by various parameters e.g. injection pressure, injection timing, compression ratio, equivalence ratio, cylinder geometry, in cylinder air motion etc. In this study, a diesel engine has been investigated by employing a commercial CFD software (ANSYS Forte, version 18.1) especially developed for internal combustion engines (ICE) modeling; focusing primarily on the effects of equivalence ratio and compression ratio on combustion and emission characteristics. RNG k-ε model was employed as the turbulence model for analyzing the physical phenomena involved in the change of kinetic energy. In order to reduce the computational cost and time, a sector mesh of 45o angle with periodic boundary conditions applied at the periodic faces of the sector, is considered instead of using the whole engine geometry. Simulations are performed for a range of equivalence ratio varying from 0.6 to 1.2 and for three compression ratios namely, 15:1, 18:1 and 21:1. Results show that, improvement in combustion characteristics with higher compression ratio could be achieved for both lean and rich mixtures. Peak in-cylinder pressure and peak heat release nearer to TDC are achieved for compression ratio of 18:1 that could results in more engine torque. For compression ratio beyond 16:1, effects of fuel concentration on ignition delay is more pronounced. At lower compression ratio, in-cylinder temperature is not sufficiently high for atomization, vaporization, mixing of fuel with air, and preflame reactions to occur immediately after the fuel injection. NOx emission in diesel engine increases due to higher pressure and temperature inside the cylinder associated with relatively higher compression ratio. Rich mixture leads to more CO and unburnt hydrocarbon emission compared to lean mixture as result of incomplete combustion. Engine operation with too high compression ratio is detrimental as emission is a major concern.


2003 ◽  
Vol 4 (1) ◽  
pp. 47-60 ◽  
Author(s):  
M Canakci ◽  
R D Reitz

Homogeneous charge compression ignition (HCCI) is receiving attention as a new low-emission engine concept. Little is known about the optimal operating conditions for this engine operation mode. Combustion under homogeneous, low equivalence ratio conditions results in modest temperature combustion products, containing very low concentrations of NOx and particulate matter (PM) as well as providing high thermal efficiency. However, this combustion mode can produce higher HC and CO emissions than those of conventional engines. An electronically controlled Caterpillar single-cylinder oil test engine (SCOTE), originally designed for heavy-duty diesel applications, was converted to an HCCI direct injection (DI) gasoline engine. The engine features an electronically controlled low-pressure direct injection gasoline (DI-G) injector with a 60° spray angle that is capable of multiple injections. The use of double injection was explored for emission control and the engine was optimized using fully automated experiments and a microgenetic algorithm optimization code. The variables changed during the optimization include the intake air temperature, start of injection timing and the split injection parameters (per cent mass of fuel in each injection, dwell between the pulses). The engine performance and emissions were determined at 700 r/min with a constant fuel flowrate at 10 MPa fuel injection pressure. The results show that significant emissions reductions are possible with the use of optimal injection strategies.


2021 ◽  
pp. 146808742110139
Author(s):  
José Galindo ◽  
Vicente Dolz ◽  
Javier Monsalve-Serrano ◽  
Miguel Angel Bernal ◽  
Laurent Odillard

Internal combustion engines working at cold conditions lead to the production of excessive pollutant emissions levels. The use of the exhaust gas recirculation could be necessary to reduce the nitrogen oxides emissions, even at these conditions. This paper evaluates the impact of using the high-pressure exhaust gas recirculation strategy while the diesel particulate filter is under active regeneration mode on a Euro 6 turbocharged diesel engine running at low ambient temperature (−7°C). This strategy is evaluated under 40 h of operation, 20 of them using the two systems in combination. The results show that the activation of the high-pressure exhaust gas recirculation during the particulate filter regeneration process leads to a 50% nitrogen oxides emissions reduction with respect to a reference case without exhaust gas recirculation. Moreover, the modification of some engine parameters compared to the base calibration, as the exhaust gas recirculation rate, the main fuel injection timing and the post injection quantity, allows to optimize this strategy by reducing the carbon monoxide emissions up to 60%. Regarding the hydrocarbons emissions and fuel consumption, a small advantage could be observed using this strategy. However, the activation of the high-pressure exhaust gas recirculation at low temperatures can produce fouling deposits and condensation on the engine components (valve, cooler, intake manifold, etc.) and can contribute to reach saturation conditions on the particulate filter. For these reasons, the regeneration efficiency is followed during the experiments through the filter status, concluding that the use of low high-pressure exhaust gas recirculation rates in combination with the regeneration mode also allows to clean the soot particles of the particulate filter. These soot depositions are visualized and presented at the end of this work with a brief analysis of the soot characteristics and a quantitative estimation of the total soot volume produced during the experimental campaign.


Author(s):  
Z Gao ◽  
W Schreiber

The goal of the study is to present and to evaluate theoretically two strategies for reducing simultaneously both particulate and NOx emission from a compression-ignited, direct injection engine. The emission reduction strategies to be considered here include auxiliary exhaust gas injection (AEGI) and a combination of exhaust gas recirculation (EGR) and AEGI. The auxiliary gas injection (AGI) process consists of the injection of a gas directly into the combustion chamber of a diesel engine during the combustion stroke to enhance fluid mixing. Increased mixing during the combustion process can lower the emission of both soot and NOx. AEGI is a process whereby exhaust gas is the injected gas used in AGI. To predict the effect of AEGI on diesel engine combustion and emission, a gas injection model was developed and used with a multidimensional simulation computer code, KIVA. The program is used to evaluate the combined effect of AEGI and EGR on pollutant emissions in a Caterpillar diesel engine. The results demonstrate that the injection timing of AEGI affects soot emissions quite differently to NOx emissions. A combination of EGR and AEGI is found to be more effective than AEGI alone for the maximum simultaneous reduction of soot and NOx emissions. It is predicted that the EGR and AEGI combination can reduce both particulate and NOx emissions by almost 50 per cent over baseline.


Sign in / Sign up

Export Citation Format

Share Document