Paper 4: Development of High-Pressure Boiler Feed Pumps in Britain during the Last Decade

Author(s):  
G. F. Arkless

This paper traces the evolution of the high-pressure feed pump in this country over the last decade, concentrating on its application in land-based, steam power plant. The influence of the choice of feed system and the effect of mounting feed water flow rates, pressure, and temperature on the design of the feed pump is discussed. Advantages and disadvantages of the various methods of driving a feed pump are enumerated and attention given to the reasons for the adoption of higher running speeds, and the means whereby high-speed pumps have been accommodated in view of their higher net positive suction head requirements. Material selection and component design is also considered in the light of the changing requirements brought about by larger size, more onerous operating conditions, and higher running speed. Glands, axial thrust balancing devices, impeller mountings, controls, and high-pressure joints, are each briefly discussed.

2015 ◽  
Vol 734 ◽  
pp. 906-909
Author(s):  
Ren Xing Zhang

Analyze the actual operating conditions of the high pressure feed-water pump; discuss its negative effects on the safety and economic benefits to the enterprise. Propose the use of high-voltage inverter on high-pressure feed-water pump with variable frequency and adjustable speed control. Specify its implementation and problems encountered in the implementation process and the countermeasures.


Author(s):  
In-Beom Lee ◽  
Seong-Ki Hong ◽  
Bok-Lok Choi

Identification of the axial thrust load during the operating conditions of a turbocharger provides useful information to turbocharger designers. The axial force acting on the thrust bearing is mainly caused by the imbalance between the turbine wheel and the compressor wheel. It has a significant influence on the friction losses, which reduce the efficiency and the performance of a high-speed turbocharger. Well-known formulae for calculating the thrust load and the mechanical friction have been given in the literature. However, it is difficult to determine an accurate axial force by an analytical approach. This paper presents a detailed procedure for prediction of the axial thrust load during turbocharger operation. The first step is to identify the relationship between the externally applied load and the strain response using a specially designed test device and a numerical method. Next, if the operating strains and temperatures are measured, the strain signals due to the axial thrust can be adjusted by subtracting the thermal effects from the measured strains. Finally, the thrust loads in particular operating conditions are inversely obtained by inserting the adjusted strains into the calibration equations.


2009 ◽  
Vol 131 (3) ◽  
Author(s):  
C. J. Teo ◽  
L. X. Liu ◽  
H. Q. Li ◽  
L. C. Ho ◽  
S. A. Jacobson ◽  
...  

Silicon based power micro-electro-mechanical system (MEMS) applications require high-speed microrotating machinery operating stably over a large range of operating conditions. The technical barriers to achieving stable high-speed operation with micro-gas-bearings are governed by (1) stringent fabrication tolerance requirements and manufacturing repeatability, (2) structural integrity of the silicon rotors, (3) rotordynamic coupling effects due to leakage flows, (4) bearing losses and power requirements, and (5) transcritical operation and whirl instability issues. To enable high-power density the micro-turbomachinery must be run at tip speeds comparable to conventional scale turbomachinery. The rotors of the micro-gas turbines are supported by hydrostatic gas journal and hydrostatic gas thrust bearings. Dictated by fabrication constraints the location of the gas journal bearings is at the outer periphery of the rotor. The high bearing surface speeds (target nearly 10×106 mm rpm), the very low bearing aspect ratios (L/D<0.1), and the laminar flow regime in the bearing gap (Re<500) place these micro-bearing designs into unexplored regimes in the parameter space. A gas-bearing supported micro-air turbine was developed with the objectives of demonstrating repeatable, stable high-speed gas-bearing operation and verifying the previously developed micro-gas-bearing analytical models. The paper synthesizes and integrates the established micro-gas-bearing theories and insight gained from extensive experimental work. The characteristics of the new micro-air turbine include a four-chamber journal bearing feed system to introduce stiffness anisotropy, labyrinth seals to avoid rotordynamic coupling effects of leakage flows, a reinforced thrust bearing structural design, a redesigned turbine rotor to increase power, a symmetric feed system to avoid flow and force nonuniformity, and a new rotor micro-fabrication methodology for reduced rotor imbalance. A large number of test devices were successfully manufactured demonstrating repeatable bearing geometry. More specifically, three sets of devices with different journal bearing clearances were produced to investigate the dynamic behavior as a function of bearing geometry. Experiments were conducted to characterize the “as-fabricated” bearing geometry, the damping ratio, and the natural frequencies. Repeatable high-speed bearing operation was demonstrated using isotropic and anisotropic bearing settings reaching whirl-ratios between 20 and 40. A rotor speed of 1.7×106 rpm (equivalent to 370 m/s blade tip speed or a bearing DN number of 7×106 mm rpm) was achieved demonstrating the feasibility of MEMS-based micro-scale rotating machinery and validating key aspects of the micro-gas-bearing theory.


Author(s):  
Laura S. Beermann ◽  
Corina Höfler ◽  
Hans-Jörg Bauer

Gas turbine engines are subject to increased performance and improved efficiency, which leads to rising core temperatures with additional cooling needs. Reducing the parasitic leakage in the secondary flow system is important to meet the challenging requirements. New seal designs have to be tested and optimized at engine like conditions, like high pressure of up to 9 bar and surface speed of up to 280 m/s as well as an adjusted flow field. Flexible seal designs are an innovative approach to reduce leakage mass flows significantly. Axial and radial movements during transient operating conditions can be compensated easily, thus allowing a smaller gap width and minimizing rub and heat load. This paper describes the design and construction of a new rotating test rig facility. To the knowledge of the authors, this is the only test rig with an adjustable gap width and flow field in a high pressure and speed range. The facility is capable of up to 8 bar differential pressure across the seal and up to 4 bar back pressure. The high revolution engine facilitates a surface speed of up to 280 m/s. A traversable casing allows a quick change of the gap width during operation and simulates radial and axial rotor/stator movements in the engine. The seal movement as well as the resulting gap width are measured during operation to fully understand the seal behavior. An important feature of the new test rig is the continuously adjustable pre-swirl system. It has been designed to cover the different flow conditions in the real engine. Therefore, a RANS parameter study of the pre-swirl chamber has been conducted, which shows the adjustability of different pre-swirl ratios for constant and changing inlet mass flows.


2021 ◽  
Vol 11 (8) ◽  
pp. 3491
Author(s):  
Dokyu Kim ◽  
SeungJoon Baik ◽  
Jeong Ik Lee

A supercritical CO2 (S-CO2)-cooled Brayton cycle is under development for distributed power applications for remote regions. In order to successfully develop it, issues of controlling shaft levitation with bearings have to be solved. From several studies, magnetic bearings have been suggested for reliable levitation performance with reduced cost and complexity. However, several studies on magnetic bearing show that instability issues under high-pressure fluid and high-speed operating conditions may exist. The purpose of this research is to provide background for understanding the instability of magnetic bearings under S-CO2 conditions and propose functional requirements of the magnetic bearing. Thus, the rotating shaft with magnetic bearings operating under high pressure fluid was first analyzed. To test the theory, a magnetic bearing test rig was constructed. By comparing experimental data to the analysis results, the analysis results were verified. Therefore, the analysis results can be used for predicting instability in the future and can contribute to the development of better magnetic bearing controllers.


2013 ◽  
Vol 53 (3) ◽  
pp. 222-229 ◽  
Author(s):  
Wesley Clint Hoffmann ◽  
Bradley Keith Fritz ◽  
Muhammad Farooq ◽  
Todd William Walker ◽  
Zbigniew Czaczyk ◽  
...  

Abstract Spray droplet size has long been recognized as an important variable that applicators of vector control sprays must be aware of to make the most effective spray applications. Researchers and applicators have several different techniques available to assess spray droplet size from spray nozzles. The objective of this study was to compare the droplet size spectrum produced by three nozzles commonly used in vector control in a high-speed wind tunnel, when characterized using three different laser-based droplet size measurement systems. Three droplet sizing systems: Malvern Spraytec laser diffraction, Sympatec HELOS laser diffraction, and TSI Phase Doppler Particle Analyzer (PDPA), were simultaneously operated, but under different operating conditions, to measure the spray droplet size-spectra for three spray nozzles. The three atomizers: a TeeJet® 8001E even flat fan nozzle, a BETE® PJ high pressure fog nozzles, and a Micronair ® AU5000 rotary atomizer were evaluated in a high speed wind tunnel at airspeeds of 53 and 62 m/s (120 and 140 mph). Based on the results of this work, only the BETE® PJ high pressure fog nozzles met the label requirements for both Fyfanon® and Anvil®. While the other nozzle might met the Dv0.5 (VMD - volume median diameter) requirement for Fyfanon®, the resulting Dv0.9 values exceeded labeled size restrictions. When applying Anvil with the BETE PJ high pressure fog nozzles, it is important to use the smaller two orifice sizes. The larger sizes tended to result in Dv0.9 values that exceeded label recommendations


2012 ◽  
Vol 2012 (1) ◽  
pp. 001073-001077
Author(s):  
Akhlaq Rahman ◽  
Jim Norman

In present day's ultra high speed data transmission environment, passive filters play a very important and critical function to achieve high-end system performance, especially in Microwave frequency ranges of 10 GHz or higher. Excellent electrical specification such as accurate −3dB cutoff frequency bandwidth, stable group delay, along with VSWR characteristics are very important parameters for system performance. Filters mechanical specification is similarly important, if not more. Products need not only be in certain size to fit in the board but also needs to be complement with other components. As available space in PCB become miniature for each component, filters footprint as well as via position need to be in certain ways to optimize board space and performance. Packaging material and packaging techniques play significant role to be ease of mass production as well. While some manufacturers like “Wirebonding” packaging, some like “Through Via”, and “Ball Grid Array” is the packaging choice of some manufacturers. Component vendors need to have capability to change component design space, as the system designers' demand for their choice of footprint and packaging environment. Moreover, these stringent mechanical specifications cannot compromise the electrical specification. To realize the effect of different packaging technique, we extensively studied several packaging techniques for Bessel filters with −3dB cutoff frequencies of 7 GHz to 10 GHz. We explored “stud bump ball grid array”, “wirebonding”, and “land grid array” footprint packaging. We modeled different packaging technique and incorporated that into simulation to design the filter. We successfully manufacture surface mount filters with three different footprint packaging. We explored the influence of each packaging technique for electrical performance. We studied the hidden parasitic introduction from each packaging style and the detrimental effect of these to electrical performance, especially for frequency of 7 GHz to 10 GHz. We showed the advantages and disadvantages of all three kind of packaging technology in respect of electrical as well as mechanical specification.


Author(s):  
E. Freitag ◽  
H. Konle ◽  
M. Lauer ◽  
C. Hirsch ◽  
T. Sattelmayer

In order to assess the stability of gas turbine combustors measured flame transfer functions are frequently used in thermoacoustic network models. Although many combustion systems operate at high pressure, the measurement of flame transfer functions was essentially limited to atmospheric conditions in the past. With the test rig employed in the study presented in the paper transfer function measurements were made for a wide range of combustor pressures. The results show similarities of the amplitude response in the entire pressure range investigated. However, the increase of the pressure leads to a considerable amplitude gain at higher frequencies. In the low frequency regime the phase is also independent of pressure, whereas above this region the pressure increase results in a considerably smaller phase lag. These observations are particularly important when evaluating Rayleigh’s criterion: Interestingly, the choice of the operating pressure can render a system stable or unstable, so that the common procedure of applying flame transfer functions measured at ambient pressure for the high pressure engine case may not always be appropriate. The detailed analysis of high speed camera images, which were recorded to get locally resolved information on the flame response reveal different regions of activity within the flame that change in strength, size and location with changing operating conditions. The observed transfer function phase behavior is explained by the interaction of those regions and it is shown that the region of highest dynamic activity dominates the phase.


2002 ◽  
Vol 124 (3) ◽  
pp. 456-464 ◽  
Author(s):  
Noah D. Manring

Many axial-piston pumps utilize a swash plate for regulating discharge flow. In this research, the required control and containment forces are examined for a cradle-mounted, axial-actuated swash plate. These forces are described in closed-form for providing the designer with information that is necessary for sizing these critical components within the pump. In this research, it is shown that a proper design of the control device may be used to load the cradle bearings equally during high-pressure operation. While previous research has shown that a transverse-actuated swash plate will tend to dislocate itself from the cradle during high speed and low pressure operation, this research shows that an axial-actuated swash-plate tends to keep the swash-plate well seated within the cradle during all operating conditions. The information presented here is generalized for typical characteristics of swash plates that are used within the industry and is therefore useful for analyzing existing designs as well as new ones.


Author(s):  
Hossein Sadri ◽  
Henning Schlums ◽  
Michael Sinapius

Aerodynamic foil bearings are suitable to support light, high-speed rotors under extreme operating conditions such as very low or very high temperatures, e.g. in cooling turbines, small gas turbines or exhaust gas turbochargers. The required bearing load capacity is generated by an aerodynamic pressure build-up in the corresponding lubrication gap. Due to the high dependence of the bearing performance on the bore geometry, the rotordynamic behavior (e.g. bearing stability) and static properties (e.g. load capacity) as a function of radial clearance and hydrodynamic preload are one of the main points of interest in recent studies. The outcome of both the experimental and the numerical investigations show the advantages and disadvantages of the various configurations of the bearing bore in different operating conditions. These observations lead to the basic idea of an adaptive air foil bearing (AAFB) in which, depending on the operating conditions, the bearing bore contour is changed by means of piezoelectric actuators applied to the compliant supporting shell. Similar to other shape morphing approaches, optimization with regard to various components of the mechanism is the next step in the design process after targeting the design pattern. This paper concentrates on an AAFB as an efficient approach to actively shape the contour of the bore clearance in a 3-pad bearing. Numerous FEM analyses of a functional model for an AAFB in addition to the experimental efforts reveal the main concerns of the design. Finally, the result of this study is a working graph for the AAFB under various loading conditions while operating with different input voltages of the actuators.


Sign in / Sign up

Export Citation Format

Share Document