scholarly journals Effect of Functional Groups and pH on the Affinity and Adsorption Capacity of Activated Carbon: Comparison of Homogeneous and Binary Langmuir Model Parameters

2003 ◽  
Vol 21 (6) ◽  
pp. 511-524 ◽  
Author(s):  
Sirous Nouri
2013 ◽  
Vol 726-731 ◽  
pp. 634-637 ◽  
Author(s):  
Yan Qiu Lei ◽  
Hai Quan Su

A green and sustainable route for preparation of hydrochars from cornstalk by hydrothermal carbonization (200°C) was described. The morphology of the hydrochars changed with reaction time increased, the surface of the materials contained a large number of functional groups, showed higher adsorption capacity for Cr (VI) than activated carbon and the removal rates of Cr (VI) were 67% and 29% respectively (pH=1, 20°C).


2013 ◽  
Vol 726-731 ◽  
pp. 1687-1690
Author(s):  
Jing Zhang ◽  
Jian Song Liu ◽  
Chun Liu ◽  
Jing Liang Yang ◽  
Lei Zhang

The structure and surface chemical properties of activated carbon after nitric acid modification and their influences on adsorption and catalytic ozonation of acid red 3R were investigated. The results showed that both specific surface area and micropore volume of activated carbon decreased, but mesopore volume increased after nitric acid modification. The adsorption capacity and catalytic ozonation performance of modified activated carbon were influenced due to the increased surface acidic functional groups. The adsorption capacity of modified activated carbon was enhanced under acidic condition due to dispersion interaction between increased surface acidic functional groups and acid red 3R. The increase in surface acidic functional groups of activated carbon was also considered to be responsible for improvement of the catalytic ozonation of acid red 3R under alkaline condition, because of their participation in the ozone decomposition and OH generation.


2020 ◽  
Vol 3 (1) ◽  
pp. 208-220
Author(s):  
Sara Jamaliniya ◽  
O. D. Basu ◽  
Saumya Suresh ◽  
Eustina Musvoto ◽  
Alexis Mackintosh

Abstract A renewable, green activated carbon made from sucrose (sugar) was compared with traditional bituminous coal-based granular activated carbon (GAC). Single and multi-component competitive adsorption of nitrate and phosphate from water was investigated. Langmuir and Freundlich isotherm models were fitted to data obtained from the nitrate and phosphate adsorption experiments. Nitrate adsorption fits closely to either Freundlich or Langmuir model for sucrose activated carbon (SAC) and GAC with a Langmuir adsorption capacity of 7.98 and 6.38 mg/g, respectively. However, phosphate adsorption on SAC and GAC demonstrated a selective fit with the Langmuir model with an adsorption capacity of 1.71 and 2.07 mg/g, respectively. Kinetic analysis demonstrated that adsorption of nitrate and phosphate follow pseudo-second-order kinetics with rate constant values of 0.061 and 0.063 g/(mg h), respectively. Competitive studies between nitrate and phosphate were demonstrated in preferential nitrate removal with GAC and preferential phosphate removal with SAC. Furthermore, nitrate and phosphate removals decreased from 75% removal to 35% removal when subject to multi-component solutions, which highlights the need for adsorption analysis in complex systems. Overall, SAC proved to be competitive with GAC in the removal of inorganic contaminants and may represent a green alternative to coal-based activated carbon.


2015 ◽  
Author(s):  
◽  
Thobeka Pearl Makhathini

Industrial wastewater containing organic compounds and/or substances is an increasing problem due to its increasing toxic threat to humans and the environment. The removal of organic compounds has become an imperative issue due to stringent measures that are introduced by the Department of Environmental Affairs in South Africa to enforce regulations concerning wastes that emanate from petrochemical industries. Thus, wastewater containing these compounds must be well understood so as to device adequate treatment processes. In this study, the adsorptive capacity of PAD 910 polystyrenic resin originating from China and granular activated carbon (GAC) was evaluated for the removal of benzene, toluene, ethylbenzene and isomers of xylene (BTEX) from an aqueous solution. Batch studies were performed to evaluate the effects of various experimental parameters such as mixing strength, contact time, internal diffusion, adsorbates and initial concentration on the removal of the BTEX compounds. The experiments were conducted at the mixing strength of 180 rpm, in order to comfortably assume negligible external diffusion. The equilibrium isotherms for the adsorption of the adsorbates on the PAD 910 polystyrenic resin were analyzed by the Langmuir, Freundlich and linearized Dubinin-Radushkevich models at a pH of 5.86. The Langmuir model fitted the data adequately; this result was supported by the work done by Site (2001) which concluded that the Langmuir is the most practical model in representing the adsorption of aromatic compounds. The Langmuir model indicated that resin has the highest adsorption capacity of 79.44 mg/g and GAC has 66.2 mg/g. Resin was found to adsorb 98% of benzene, 88% of toluene, 59% of ethylbenzene, 84% m-;p-xylene and 90% o-xylene at an initial concentration of 14.47 mg/l. BTEX adsorption was a two-stage process: a short, fast initial period then followed by a longer, slow period corresponding to the intra-particle diffusion of BTEX molecules in macropores and micropores. The adsorption capacity was determined by total surface area accessible to BTEX and the availability of active surface chemical groups. The dependence of adsorption capacity on the surface of the two adsorbents and temperature was observed, suggesting the chemical nature of the BTEX adsorption. The interaction between BTEX/activated carbon was however weak and energetically similar to that of hydrogen bonds. Generally, BTEX adsorption was an exothermic process that combined physisorption and chemisorption. The PAD 910 polystyrenic resin had a greater specific surface area (SSA) of 1040 m2/g which yielded in higher capacity compared to GAC which had a low SSA of 930 m2/g. The normalized adsorption capacity was found to be higher for PAD 910 polystyrenic resin than GAC (0.66 and 0.27 mg/m2 respectively) which suggests that the resin has a good potential of the adsorbent for removing BTEX compound compared to GAC. Fixed bed columns were used to evaluate the dynamic adsorption behaviour of BTEX/PAD 910 polystyrenic resin through a dynamic column approach. The performance of small-scale fixed bed columns, each containing PAD 910 polystyrenic resin and the other containing GAC were evaluated using 14.47 mg/L of BTEX concentration. The columns with 32 mm diameter, studied bed depths of 40, 80 and 120 mm and flow rate of 6 ml/min were used in order to obtain experimental breakthrough curves. The bed depth service time (BDST) model was used to analyze the experimental data and design parameters like adsorption capacity, adsorption rate and service time at 20% and 60% breakthrough. BDST was also used to predict the service times of columns operated under different influent concentrations and flow rates to produce theoretical values that were compared to the experimental values. Adsorption model by Dubinin and colleagues (Dubinin, 1960), based on the theory of volume filling micropores was used to fit the measured adsorption isotherms. Agreement between the modelled and experimental results for GAC and PAD 910 polystyrenic resin using Dubinin-Radushkevich equation generally improved with increasing the surface area and produced reasonable fits of the adsorption isotherms for both GAC and PAD 910 polystyrenic resin. Granular activated carbon had a lesser performance compared to the PAD 910 polystyrenic resin, in terms of kinetic studies, and this finding was attributed to the pore structure which made accessibility of BTEX molecules more difficult in this study. The results indicate that PAD 910 polystyrenic resin show potential as an adsorbent for removing low concentrations of BTEX from wastewater. It is suggested that necessary treatment of GAC might improve the performance of this adsorbent by creating more mesopore volume and fraction which is essential to enhance adsorption rate. A substantial different SSA could be achieved through high porosity development in GAC by using templating method with a higher potassium hydroxide mixture ratio.


Author(s):  
Hind Yaacoubi ◽  
Zuo Songlin

Abstract The objective of this research is to study the retention of two acidic anthraquinone dyes by Coconut-shell-based activated carbon. Ultimately, this work allows the valorization of this new material as an adsorbent. The effect of ammonia modification on the adsorption capacity of activated carbon towards remazol brilliant blue R19 (RB19) and acid blue 25 (AB25), has been studied. Coconut-shell-based activated carbon material was modified under ammonia flow at 900 and 1000 °C. The adsorption rates and isotherms of RB19 and AB25 on the resultant materials were then tested. The results show that ammonia modification remarkably increases the adsorption capacities of the activated carbons to RB19 and AB25, by a factor of 2–3 after treatment at 1000 °C (From 0.22 mmol g−1 and 1.04 mmol g−1 to 0.76 mmol g−1 and 2.19 mmol g−1 on AC and AC-O-N-1000, respectively). The increased adsorption capacity is attributed to the introduction of basic nitrogen-containing functional groups and enhanced pore development by ammonia modification. The collected experimental kinetic and isotherm data are well compatible with the intraparticle diffusion kinetic model and the Langmuir isotherm model. According to these results, the adsorption affinity is homogeneous in terms of surface functional groups and the surface bears a finite number of identical adsorption sites.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Feng Zhang ◽  
Dong-Sheng Wang ◽  
Fan Yang ◽  
Tian-Yu Li ◽  
Hong-Yan Li ◽  
...  

Sodium benzenesulfonate was doped into polypyrrole-modified granular activated carbon (pyrrole-FeCl3·(6H2O)-sodium benzenesulfonate-granular activated carbon; PFB-GAC) with the goal of improving the modified GAC’s ability to adsorb sulfate from aqueous solutions. At a GAC dosage of 2.5 g and a pyrrole concentration of 1 mol L−1, the adsorption capacity of PFB-GAC prepared using a pyrrole:FeCl3·(6H2O):sodium benzenesulfonate ratio of 1000 : 1500 : 1 reached 23.05 mg g−1, which was eight times higher than that for GAC and two times higher than that for polypyrrole-modified GAC without sodium benzenesulfonate. Adsorption was favored under acidic conditions and high initial sulfate concentrations. Doping with sodium benzenesulfonate facilitated polymerization to give polypyrrole. Sodium benzenesulfonate introduced more imino groups to the polypyrrole coating, and the N+ sites improved ion exchange of Cl− and SO42− and increased the adsorption capacity of sulfate. Adsorption to the PFB-GAC followed pseudo-second-order kinetics. The adsorption isotherm conformed to the Langmuir model, and adsorption was exothermic. Regeneration using a weak alkali (NH3·H2O), which released OH− slowly, caused less damage to the polypyrrole than using a strong alkali (NaOH) as the regeneration reagent. NH3·H2O at a concentration of 12 mol L−1 (with the same OH− concentration as 2 mol L−1 NaOH) released 85% of the sorbed sulfate in the first adsorption-desorption cycle, and the adsorption capacity remained >6 mg g−1after five adsorption-desorption cycles.


2012 ◽  
Vol 161 ◽  
pp. 162-166 ◽  
Author(s):  
Xiao Lan SONG ◽  
Ying Zhang ◽  
Cheng Yin Yan ◽  
Wen Juan Jiang ◽  
Hong Jiang Xie

The adsorption performance of mercury ion onto activated carbon prepared from rice husk with NaOH was carried out at initial concentration of 100 mg/L. The activated carbon obtained at 800 °C possessed the outstanding specific surface area of 2786 m2/g. And the results showed that the maximum adsorption capacity of Hg2+ was recorded as 342.0 mg/g due to abundant micropores of 1.076 nm. In addition, the adsorption data were well explained by the Langmuir model with the monolayer adsorption capacity of 555.6 mg/g.


2013 ◽  
Vol 663 ◽  
pp. 807-812
Author(s):  
Guo Yang ◽  
Yan Jie ◽  
Hu Yang ◽  
Chen Hong Zhang

To investigate the influence of N-containing surface functional groups on adsorption capacity of AC, the activated carbon (AC) was modified with ammonia gas at 650 °C. Surface functional groups were quantitatively analyzing by Boehm titration. The effect of temperature on adsorption capacity suggested higher temperature is favourable. The influence of pH indicated the adsorption was favorable in acidic solution. The adsorption isotherms were fitted by Langmuir model and Freundlich model. Moreover, kinetic studies showed the adsorption of phenol onto adsorbents was followed by pseudo-second-order kinetic model. The adsorption capacity of ammoniated AC for p-chlorophenol was greatly improved.


2018 ◽  
Vol 762 ◽  
pp. 87-92 ◽  
Author(s):  
Farhat Bensalah ◽  
Abdelkader Iddou ◽  
Hafida Hentit ◽  
Abdallah Aziz ◽  
Andrei Shishkin

Activated carbon prepared from industrial wastewater treatment plant dry sludge was proven to be efficient for the removal of refractory dye red scarlet nylosan (F3GL). Mixed treatment (chemical followed by thermal) considerably improved the adsorption capacity of the sludge. Batch tests at 40 °C gave maximal adsorption capacity. Application of Langmuir model gave 434.78 mg/g for treated material (SNHC) and 169.49 mg/g for the unmodified material (S). Thermodynamic parameters indicated that the adsorption is favored by an increase of temperature. The values of the enthalpy revealed physic-sorption. The results clearly showed that the mixed treatment of the adsorbent is the most adequate for the removal of toxic substances such as dyes present in industrial wastewaters.


Sign in / Sign up

Export Citation Format

Share Document