The influence of thermal treatment conditions on the properties of TiO2 ceramics

2014 ◽  
Vol 11 (2) ◽  
pp. 131-138
Author(s):  
Inga Narkevica ◽  
Jurijs Ozolins ◽  
Kristaps Rubenis ◽  
Janis Kleperis ◽  
Janis Locs ◽  
...  

The influence of thermal treatment conditions on titanium dioxide ceramics phase transformation, microstructure, physico-mechanical and electrical properties was studied. TiO2 ceramic was prepared using extrusion technology and thermal treatment in air and subsequent annealing under high vacuum conditions. It has been observed that intense TiO2 ceramic mass sintering occurs over the temperature ranging from 950 °C to 1100 °C. It is accompanied by crystallographic modification change from anatase to rutile. Ceramic sample annealing in vacuum causes formation of nonstoichiometric titanium oxide ceramics and as a result electrical conductivity of the material significantly increases. Using extrusion process relatively dense and mechanically resistant ceramic material can be obtained that can be used in different technological processes.

2014 ◽  
Vol 604 ◽  
pp. 254-257
Author(s):  
Inga Narkevica ◽  
Madars Reimanis ◽  
Janis Kleperis ◽  
Jurijs Ozolins ◽  
Liga Berzina-Cimdina

TiO2 ceramic was prepared using extrusion technology and thermal treatment in two stages: sintering in air and subsequent annealing under high vacuum conditions. Sample thermal treatment in high vacuum conditions causes formation of nonstoichiometric titanium oxide ceramic. As a result electrical conductivity of the material significantly increases. Such a material can be used for electrode production for electrochemical water treatment.


2014 ◽  
Vol 604 ◽  
pp. 249-253 ◽  
Author(s):  
Agnese Pura ◽  
Janis Locs ◽  
Liga Berzina-Cimdina

TiO2samples were obtained by extrusion process, sintered in air at 1000 °C, 1100 °C, 1200°C and 1300 °C and, afterwards, thermally treated under vacuum conditions at 1250 °C for 1 hour applying two different heating/cooling rates (2 °C/min and 5 °C/min). It was found that thermal treatment conditions substantially affected thermoelectric properties of the samples. Increasing sintering temperature, during the sample thermal treatment in air, the electrical conductivity of the specimens increased, while Seebeck coefficient decreased. With an increase in the heating rate during the vacuum heat treatment of the samples, the electrical conductivity of the samples decreased, while Seebeck coefficient increased.


2009 ◽  
Vol 3 (4) ◽  
pp. 187-190 ◽  
Author(s):  
Agnese Pavlova ◽  
Janis Barloti ◽  
Valdis Teters ◽  
Janis Locs ◽  
Liga Berzina-Cimdina

Titanium oxide ceramics were prepared using extrusion process and subsequent thermal treatment in two stages - in air atmosphere at 1150?C and than in vacuum at temperatures between 1200 and 1350?C. Influence of thermal treatment conditions on microstructure and electrical properties (thermopower, conductivity of semiconductor and electron activation energy) of obtained ceramics was investigated. It was confirmed that all samples treated in vacuum are n-type semiconductors. It was also found that the increase of temperature during sintering in vacuum leads to increased electrical conductivity, however, the highest thermopower values were obtained for samples thermally treated in vacuum at 1225?C. Electron activation energy (?E), calculated using dependence of conductivity of samples on temperature, was is in the range from 0.049 to 0.061 eV. The obtained products can be used as electrodes for water treatment technology based on photoelectrolysis. .


2012 ◽  
Vol 6 (2) ◽  
pp. 91-95 ◽  
Author(s):  
Agnese Pura ◽  
Kristaps Rubenis ◽  
Dmitrijs Stepanovs ◽  
Liga Berzina-Cimdina ◽  
Jurijs Ozolins

Ceramics containing titanium oxides were prepared using extrusion technology and thermal treatment in two stages: sintering at normal atmospheric conditions at 1000 and 1200?C and annealing in high vacuum conditions at 950 and 1150?C. Electrical properties such as thermopower and electrical conductivity of cylindrical specimens have been studied at temperature range from the room temperature up to 350?C. Activation energy of the process has been determined from conductivity curves. Obtained thermopower values are in the range from 68 up to 105 mV at temperature gradient between the hot and cold ends of the samples at 300?C, while activation energy values are from 0.03 to 1.16 eV.


2014 ◽  
Vol 604 ◽  
pp. 309-312 ◽  
Author(s):  
Natalija Borodajenko ◽  
Kristaps Rubenis ◽  
Agnese Pura ◽  
Nina Mironova-Ulmane ◽  
Jurijs Ozolins ◽  
...  

The present work describes results of investigation of structural characteristics of TiO2 ceramics, depending on temperature and thermal treatment conditions by using a variety of characterization techniques. TiO2 ceramics was prepared by extrusion method and developed as a material for electrodes for innovative water treatment technologies. It was shown that non-stoichiometric phase TiO1.95 was observed after thermal treatment of TiO2 ceramics under high vacuum conditions.


Author(s):  
Natalia Prodiana Setiawati ◽  
Joko Santoso ◽  
Sri Purwaningsih

The utilization of local food commodities such as corn and cassava with seaweed addition as a dietary fiber source for producing artificial rice through extrusion technology is an  alternative for food diversification. The research was carried out to find out the best composition (rice, corn, cassava, and seaweed) and temperature of extrusion process on making artificial rice and the influence of dietary fibre on sensory properties and physicochemical. The composition of rice, corn, and cassava in proportion  of 1:3:1 with 20% seaweed, Eucheuma cottonii, addition and temperature extruder of 90 °C were selected as the best product for artificial rice. The  sensory evaluation was 8.02±0.21 (people’s preference). In physicochemical properties, dietary fiber significantly affected on low bulk density and starch digestibility. This condition is very good for health especially in maintaining the stability of blood glucose in the body. Keywords: artificial rice, composition, extrusion, seaweed, dietary fibre, temperature


2018 ◽  
Vol 202 ◽  
pp. 67-75 ◽  
Author(s):  
Lutfi Agartan ◽  
Bilen Akuzum ◽  
Tyler Mathis ◽  
Kurtay Ergenekon ◽  
Ertan Agar ◽  
...  

2016 ◽  
Vol 65 (2) ◽  
pp. 432-439 ◽  
Author(s):  
A. A. Shesterkina ◽  
L. M. Kozlova ◽  
O. A. Kirichenko ◽  
G. I. Kapustin ◽  
I. V. Mishin ◽  
...  

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hoda Sabry Othman ◽  
Maher A. El-Hashash ◽  
S. H. El-Sabbagh ◽  
A. A. Ward ◽  
Galal A.M. Nawwar

Purpose Calcium and Zinc lignates were proven to be good antioxidants for rubber composites. The purpose of this paper is to evaluate the copper lignate antioxidant activity along with evaluating its electrical conductivity in rubber composites. Design/methodology/approach The antioxidant activity of the Cu-LSF complex was compared with that of standard commercial antioxidant additives as a green alternative. The rheological characteristics, thermal aging and mechanical and electrical properties were evaluated for the NBR vulcanizates containing the different antioxidants in the presence or absence of coupling agents. Findings Results revealed that the Cu-LSF complex (5 phr) can function as a compatibilizing, antioxidant and electrical conductivity agent. Originality/value The new copper complex prepared from paper-pulping black liquor of wastes could be used as a green antioxidant and electrical conductivity agent in rubber composites.


Author(s):  
Dominic Thaler ◽  
Nahal Aliheidari ◽  
Amir Ameli

Additive manufacturing is an emerging method to produce customized parts with functional materials without big investments. As one of the common additive manufacturing methods, fused deposition modeling (FDM) uses thermoplastic-based feedstock. It has been recently adapted to fabricate composite materials too. Acrylonitrile butadiene styrene (ABS) is the most widely used material as FDM feedstock. However, it is an electrically insulating polymer. Carbon Nanotubes (CNTs) on the other hand are highly conductive. They are attractive fillers because of their high aspect ratio, and excellent mechanical and physical properties. Therefore, a nanocomposite of these two materials can give an electrically conductive material that is potentially compatible with FDM printing. This work focuses on the investigation of the relationships between the FDM process parameters and the electrical conductivity of the printed ABS/CNT nanocomposites. Nanocomposite filaments with CNT contents up to 10wt% were produced using a twin-screw extruder followed by 3D printing using FDM method. The starting material was pellets from a masterbatch containing 15 wt% CNT. Compression-molded samples of ABS/CNT were also prepared as the bulk baselines. The effects of CNT content and nozzle size on the through-layer and in-layer electrical conductivity of the printed nanocomposites were analyzed. Overall, a higher percolation threshold was observed in the printed samples, compared to that of the compression-molded counterparts. This resulted in the conductivity of the printed samples that is at least one order of magnitude lower. Moreover, at CNT contents up to 5 wt%, the in-layer conductivity of the printed samples was almost two orders of magnitudes higher than that in the through-layer direction. In ABS/3 wt% CNT samples, the through-layer conductivity continuously decreased as the nozzle diameter was decreased from 0.8 mm to 0.35 mm. These variations in the electrical conductivity were explained in terms of the CNT alignment, caused by the extrusion process during the print, quality of interlayer bonding during deposition, and the voids created due to the discrete nature of the printing process.


Sign in / Sign up

Export Citation Format

Share Document