Effect of Thermal Treatment on Thermoelectric Properties of Extruded TiO2 Ceramics

2014 ◽  
Vol 604 ◽  
pp. 249-253 ◽  
Author(s):  
Agnese Pura ◽  
Janis Locs ◽  
Liga Berzina-Cimdina

TiO2samples were obtained by extrusion process, sintered in air at 1000 °C, 1100 °C, 1200°C and 1300 °C and, afterwards, thermally treated under vacuum conditions at 1250 °C for 1 hour applying two different heating/cooling rates (2 °C/min and 5 °C/min). It was found that thermal treatment conditions substantially affected thermoelectric properties of the samples. Increasing sintering temperature, during the sample thermal treatment in air, the electrical conductivity of the specimens increased, while Seebeck coefficient decreased. With an increase in the heating rate during the vacuum heat treatment of the samples, the electrical conductivity of the samples decreased, while Seebeck coefficient increased.

2014 ◽  
Vol 604 ◽  
pp. 240-244
Author(s):  
Kristaps Rubenis ◽  
Agnese Pura ◽  
Valdis Teteris ◽  
Janis Locs ◽  
Jurijs Ozolins

The TiO2samples were obtained by two different shaping methods: cold isostatic pressing and cold extrusion, sintered in air at 1373 K, 1573 K, 1773 K and annealed under vacuum at 1373 K. Differences in density, microstructure and thermoelectric properties were observed between the samples depending on the shaping method used. With increase in sintering temperature the electrical conductivity of all samples increased while the Seebeck coefficient decreased. Great microstructural differences were observed between the surface and bulk of the samples made by each of the shaping techniques. It was found that microstructural differences between surface and bulk of the samples affect their thermoelectric properties.


2014 ◽  
Vol 11 (2) ◽  
pp. 131-138
Author(s):  
Inga Narkevica ◽  
Jurijs Ozolins ◽  
Kristaps Rubenis ◽  
Janis Kleperis ◽  
Janis Locs ◽  
...  

The influence of thermal treatment conditions on titanium dioxide ceramics phase transformation, microstructure, physico-mechanical and electrical properties was studied. TiO2 ceramic was prepared using extrusion technology and thermal treatment in air and subsequent annealing under high vacuum conditions. It has been observed that intense TiO2 ceramic mass sintering occurs over the temperature ranging from 950 °C to 1100 °C. It is accompanied by crystallographic modification change from anatase to rutile. Ceramic sample annealing in vacuum causes formation of nonstoichiometric titanium oxide ceramics and as a result electrical conductivity of the material significantly increases. Using extrusion process relatively dense and mechanically resistant ceramic material can be obtained that can be used in different technological processes.


1999 ◽  
Vol 604 ◽  
Author(s):  
Noriyuki Takashima ◽  
Yasuo Azuma ◽  
Jun-Ichi Matsushita

AbstractSeveral silicon boride phases such as SiB4, SiB6, SiB6-x, SiB6+x, and Si11B31, were previously reported. Among them, SiB6has proved to be a potentially useful material because of its excellent electrical conductivity, high degree of hardness, moderate melting point, and low specific gravity. The sintering conditions and thermoelectric properties of silicon boride (SiB6) ceramics produced by hot pressing were investigated in order to determine the suitability of this material for high-temperature thermoelectric applications as a smart material. The relative density increased with increasing sintering temperature. With a sintering temperature of 1923 K, a sintered body having a relative density of more than 99% was obtained. X-ray diffraction analysis showed no crystalline phase other than SiB6 in the sintered body. The specimens were prepared for measurement of the electrical conductivity and Seebeck coefficient by the D.C. four-terminal method. The thermal conductivity of SiB6 was obtained by calculation from the thermal diffusivity and specific heat capacity of the specimen. The electrical conductivity of SiB6 increased with increasing temperature. The electrical conductivity of the polycrystalline SiB6 (99% dense) was 0.5 to 1.1 × 103 S/m at 298 to 1273 K. The thermal conductivity decreased with increasing temperature in the range of room temperature to 1273 K. The thermal conductivity was 9.1 to 2.5 W/mK in the range of room temperature to 1273 K. The Seebeck coefficient of SiB6 increased with increasing temperature. The Seebeck coefficient of SiB6 was 140 × 10−6 V/K at 1273 K. The figure of merit Z of SiB6 increased with increasing temperature. The Z of SiB6 reached 8.1 × 10−6/K at 1273 K. The ZT value is useful to evaluate the ability of thermoelectric materials. The ZT value reached 0.01 at 1273 K. Based on the results, SiB6 showed very good thermoelectric material characteristics at high temperature.


1998 ◽  
Vol 545 ◽  
Author(s):  
Ke-Feng Cai ◽  
Ce-Wen Nan ◽  
Xin-Min Min

AbstractB4C ceramics doped with various content of Si (0 to 2.03 at%) are prepared via hot pressing. The composition and microstructure of the ceramics are characterized by means of XRD and EPMA. Their electrical conductivity and Seebeck coefficient of the samples are measured from room temperature up to 1500K. The electrical conductivity increases with temperature, and more rapidly after 1300K; the Seebeck coefficient of the ceramics also increases with temperature and rises to a value of about 320μVK−1. The value of the figure of merit of Si-doped B4C rises to about 4 × 10−4K−1 at 1500K.


2021 ◽  
Vol 317 ◽  
pp. 28-34
Author(s):  
Joon Hoong Lim

Thermoelectric materials has made a great potential in sustainable energy industries, which enable the energy conversion from heat to electricity. The band structure and thermoelectric properties of Ni(x)Zn(1-x)Fe2O4 have been investigated. The bulk pellets were prepared from analytical grade ZnO, NiO and Fe2O3 powder using solid-state method. It was possible to obtain high thermoelectric properties of Ni(x)Zn(1-x)Fe2O4 by controlling the ratios of dopants and the sintering temperature. XRD analysis showed that the fabricated samples have a single phase formation of cubic spinel structure. The thermoelectric properties of Ni(x)Zn(1-x)Fe2O4 pellets improved with increasing Ni. The electrical conductivity of Ni(x)Zn(1-x)Fe2O4 pellets decreased with increasing Ni content. The electrical conductivity of Ni(x)Zn(1-x)Fe2O4 (x = 0.0) is (0.515 x10-3 Scm-1). The band structure shows that ZnxCu1-xFe2O4 is an indirect band gap material with the valence band maximum (VBM) at M and conduction band minimum (CBM) at A. The band gap of Ni(x)Zn(1-x)Fe2O4 increased with increasing Ni content. The increasing band gap correlated with the lower electrical conductivity. The thermal conductivity of Ni(x)Zn(1-x)Fe2O4 pellets decreased with increasing Ni content. The presence of Ni served to decrease thermal conductivity by 8 Wm-1K-1 over pure samples. The magnitude of the Seebeck coefficient for Ni(x)Zn(1-x)Fe2O4 pellets increased with increasing amounts of Ni. The figure of merit for Ni(x)Zn(1-x)Fe2O4 pellets and thin films was improved by increasing Ni due to its high Seebeck coefficient and low thermal conductivity.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2849 ◽  
Author(s):  
Yong Du ◽  
Haixia Li ◽  
Xuechen Jia ◽  
Yunchen Dou ◽  
Jiayue Xu ◽  
...  

Graphite/poly(3,4-ethyenedioxythiophene) (PEDOT) nanocomposites were prepared by an in-situ oxidative polymerization process. The electrical conductivity and Seebeck coefficient of the graphite/PEDOT nanocomposites with different content of graphite were measured in the temperature range from 300 K to 380 K. The results show that as the content of graphite increased from 0 to 37.2 wt %, the electrical conductivity of the nanocomposites increased sharply from 3.6 S/cm to 80.1 S/cm, while the Seebeck coefficient kept almost the same value (in the range between 12.0 μV/K to 15.1 μV/K) at 300 K, which lead to an increased power factor. The Seebeck coefficient of the nanocomposites increased from 300 K to 380 K, while the electrical conductivity did not substantially depend on the measurement temperature. As a result, a power factor of 3.2 μWm−1 K−2 at 380 K was obtained for the nanocomposites with 37.2 wt % graphite.


2021 ◽  
Author(s):  
Bo Feng

Abstract The effect of Ti doped at Cu site on the thermoelectric properties of BiCuSeO was studied by experimental method and first principles calculation. The results show that Ti doping can cause the lattice contraction and decrease the lattice constant. Ti doping can increase the band gap and lengthen the Cu/Ti-Se bond, resulting in the decrease of carrier concentration. Ti doping can reduce the effective mass and the Bi-Se bond length, correspondingly improve the carrier mobility. Ti doping can decrease the density of states of Cu-3d and Se-4p orbitals at the top of valence band, but Ti-4p orbitals can obviously increase the density of states at the top of valence band and finally increase the electrical conductivity in the whole temperature range. With the decrease of effective mass, Ti doping would reduce the Seebeck coefficient, but the gain effect caused by the increase of electrical conductivity is more than the benefit reduction effect caused by the decrease of Seebeck coefficient, and the power factor shows an upward trend. Ti doping can reduce Young's modulus, lead to the increase of defect scattering and strain field, correspondingly reduce the lattice thermal conductivity and total thermal conductivity. It is greatly increased for the ZT values in the middle and high temperature range, with the highest value of 1.04 at 873 K.


2008 ◽  
Vol 368-372 ◽  
pp. 547-549
Author(s):  
Jun Jiang ◽  
Ya Li Li ◽  
Gao Jie Xu ◽  
Ping Cui ◽  
Li Dong Chen

In the present study, n-type (Bi2Se3)x(Bi2Te3)1-x crystals with various chemical compositions were fabricated by the zone melting method. Thermoelectric properties, including Seebeck coefficient (α), electrical conductivity (σ) and thermal conductivity (κ), were measured in the temperature range of 300-500 K. The influence of the variations of Bi2Te3 and Bi2Se3 content on thermoelectric properties was studied. The increase of Bi2Se3 content (x) caused an increase in carrier concentration and thus an increase of σ and a decrease of α. The maximum figure of merit (ZT = α2σT/κ) of 0.87 was obtained at about 325 K for the composition of 93%Bi2Te3-7%Bi2Se3 with doping TeI4.


Author(s):  
Won-Yong Lee ◽  
Min-Sung Kang ◽  
No-Won Park ◽  
Gil-Sung Kim ◽  
Anh Duc Nguyen ◽  
...  

We report on direct comparison of out-of-plane thermoelectric properties, such as Seebeck coefficient and electrical conductivity, of the atomically thin MoS2 films. The films were prepared by a chemical vapor...


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Pornsiri Wanarattikan ◽  
Piya Jitthammapirom ◽  
Rachsak Sakdanuphab ◽  
Aparporn Sakulkalavek

In this work, stoichiometric Sb2Te3 thin films with various thicknesses were deposited on a flexible substrate using RF magnetron sputtering. The grain size and thickness effects on the thermoelectric properties, such as the Seebeck coefficient (S), electrical conductivity (σ), power factor (PF), and thermal conductivity (k), were investigated. The results show that the grain size was directly related to film thickness. As the film thickness increased, the grain size also increased. The Seebeck coefficient and electrical conductivity corresponded to the grain size of the films. The mean free path of carriers increases as the grain size increases, resulting in a decrease in the Seebeck coefficient and increase in electrical conductivity. Electrical conductivity strongly affects the temperature dependence of PF which results in the highest value of 7.5 × 10−4 W/m·K2 at 250°C for film thickness thicker than 1 µm. In the thermal conductivity mechanism, film thickness affects the dominance of phonons or carriers. For film thicknesses less than 1 µm, the behaviour of the phonons is dominant, while both are dominant for film thicknesses greater than 1 µm. Control of the grain size and film thickness is thus critical for controlling the performance of Sb2Te3 thin films.


Sign in / Sign up

Export Citation Format

Share Document