scholarly journals Radiosensitivity in Plants : I. Relation between the water content of some crop seeds and their sensitivity to different doses of X-rays and γ-rays

1966 ◽  
Vol 16 (2) ◽  
pp. 77-82
Author(s):  
Taira KATAYAma ◽  
Tsutsumi NAGAMATSU
Keyword(s):  
X Rays ◽  
Γ Rays ◽  
2014 ◽  
Vol 606 ◽  
pp. 265-268 ◽  
Author(s):  
Martin Bednarik ◽  
David Manas ◽  
Miroslav Manas ◽  
Martin Ovsik ◽  
Jan Navratil ◽  
...  

Radiation cross-linking gives inexpensive commodity plastics and technical plastics the mechanical, thermal, and chemical properties of high-performance plastic. This upgrading of the plastics enables them to be used in conditions which they would not be able to with stand otherwise. The irradiation cross-linking of thermoplastic materials via electron beam or cobalt 60 (gammy rays) is performed separately, after processing. Generally, ionizing radiation includes accelerated electrons, gamma rays and X-rays. Radiation processing with an electron beam offers several distinct advantages when compared with other radiation sources, particularly γ-rays and x-rays. The process is very fast, clean and can be controlled with much precision. There is no permanent radioactivity since the machine can be switched off. In contrast to γ-rays and x-rays, the electron beam can steered relatively easily, thus allowing irradiation of a variety of physical shapes. The energy-rich beta rays trigger chemical reactions in the plastics which results in networking of molecules (comparable to the vulcanization of rubbers which has been in industrial use for so long). The energy from the rays is absorbed by the material and cleavage of chemical bonds takes place. This releases free radicals which in next phase from desired molecular bonds. This article describes the effect of radiation cross-linking on the surface and adhesive properties of low-density polyethylene.


2021 ◽  
Vol 2114 (1) ◽  
pp. 012009
Author(s):  
Thuraya A. Abdul Hussian ◽  
Anwar kh. Farman

Abstract Radiation is a form of energy, its emitted either in the form of particles such as α-particles and β-particles (beta particles including the electron and the positron) or waves such as sunlight, X-rays and γ-rays. Radiation found everywhere around us and it comes from many different sources naturally or man-made sources. In this study a questionnaire was distributed to people working in the field of X-rays that used for a medical imaging (X-ray and CT-scan) to evaluate the extent of awareness and knowledge in estimate the damage of ionizing radiation as a result of wrong use. The questionnaire was distributed to medical clinics in Al-Harithiya in Baghdad, which it’s considered as one of the important areas in Iraq to attract and treat patients. It’s found that most of the commitment of radiography clinics by safety and security procedures. Most of the radiology clinics abide by most of the Iraqi Ministry of Health laws. However, some clinics did not implement some of the security and safety conditions


1993 ◽  
Vol 21 (02) ◽  
pp. 187-195 ◽  
Author(s):  
Hsue-yin Hsu ◽  
Yau-hui Ho ◽  
Shi-Iong Lian ◽  
Chun-ching Lin

Six to seven week old male mice of ICR strain were exposed to different doses of x-rays to determine if Jen-Sheng-Yang-Yung-Tang could be a modifier in the elimination of radiation damage. Colony forming units of bone marrow cells in the spleen (CFUs) were measured before and after x-ray irradiation with intraperitoneal injection of 10 mg/20 g or 20 mg/20 g body weight of Jen-Sheng-Yang-Yung-Tang, once a day for seven consecutive days. The recovery of CFUs and hemocytes counts by 4 Gy irradiation with Jen-Sheng-Yang-Yung-Tang administration was faster for a concentration of 20 mg/20 g than 10 mg/20 g. The measurement of 10-day CFUs showed an increase of radiotolerance in the treatment of 20 mg/20 g administration before x-ray irradiation. The injection of Jen-Sheng-Yang-Yung-Tang accelerated the recovery of hemocyte counts in mice irradiated with 4 Gy x-ray; the effect was especially profound for leukocytes with 20 mg/20 g Jen-Sheng-Yang-Yung-Tang administration after irradiation.


1966 ◽  
Vol 21 (10) ◽  
pp. 960-966 ◽  
Author(s):  
Yasuhiko Takamori ◽  
Ernst-Randolf Lochmann ◽  
Wolfgang Laskowski

The amount of DNA and RNA per dry weight as well as the rate of RNA synthesis was determined in a series of almost isogenic and homozygous Saccharomyces strains of different ploidy which had irradiated with different doses of X-rays.It was found that the RNA content per dry weight showed only a small decrease after irradiation even with high doses. The decrease in the DNA content after irradiation is larger, and it is already maximal at the smallest X-ray dose tested (75 krad) . No further decrease could be observed even after application of 225 krad.The RNA synthesis is much more radioresistant in all strains tested (haploid-hexaploid) than the colony forming ability. X-ray doses which reduce the colony forming ability of the cells to less than 1% lead to a reduction of the RNA synthesis of only about 50 per cent. The inactivation of RNA synthesis increases with increasing irradiation doses and increasing incubation time after irradiation.There was only a small difference in the radiosensitivity of the synthesis of soluble or ribosomal RNA.Genetic effects on the radiation inactivation of the colony forming ability, previously described as “aα-effect” and “AS-effect”, show no influence on the radiosensitivity of cellular nucleic acid content and synthesis.


1989 ◽  
Vol 134 ◽  
pp. 194-196
Author(s):  
C. Done ◽  
A. C. Fabian

The X-ray luminosity and variability of many AGN are sufficiently extreme that any hard γ-rays produced in the source will collide with the X-rays and create electron-positron pairs, rather than escape. A small region where vast amounts of energy are produced, such as an AGN, is an ideal place to accelerate particles to relativistic energies and so produce γ-rays by Compton scattering. The observed X-ray spectra of AGN are hard and indicate that most of the luminosity is at the highest energies so that absorption of the γ-rays represents a large fraction of the energy flux, which can then be re-radiated at lower energies. Pairs can thus effectively reprocess much of the radiant power in an AGN.


2015 ◽  
Vol 48 (4) ◽  
pp. 977-989 ◽  
Author(s):  
Riccardo Camattari ◽  
Vincenzo Guidi ◽  
Valerio Bellucci ◽  
Andrea Mazzolari

`Quasi-mosaicity' is an effect of anisotropy in crystals that permits one to obtain a curvature of internal crystallographic planes that would be flat otherwise. The term `quasi-mosaicity' was introduced by O. Sumbaev in 1957. The concept of `quasi-mosaicity' was then retrieved about ten years ago and was applied to steering of charged-particle beams at the Super Proton Synchrotron at CERN. Beams were deviated by exploiting channeling and volume reflection phenomena in curved crystals that show the `quasi-mosaic' effect. More recently, a crystal of this kind was installed in the Large Hadron Collider at CERN for beam collimation by the UA9 collaboration. Since 2011, another important application involving the `quasi-mosaic' effect has been the focalization of hard X-rays and soft γ-rays. In particular, the possibility of obtaining both high diffraction efficiency and the focalization of a diffracted beam has been proved, which cannot be obtained using traditional diffracting crystals. A comprehensive survey of the physical properties of `quasi-mosaicity' is reported here. Finally, experimental demonstrations for adjustable values of the `quasi-mosaic' curvature are provided.


1981 ◽  
Vol 88 (2) ◽  
pp. 274-280 ◽  
Author(s):  
R E Bulger ◽  
R Beeuwkes ◽  
A J Saubermann

The electrolyte and water content of cellular and interstitial compartments in the renal papilla of the rat was determined by x-ray microanalysis of frozen-hydrated tissue sections. Papillae from rats on ad libitum water were rapidly frozen in a slush of Freon 12, and sectioned in a cryomicrotome at -30 to -40 degrees C. Frozen 0.5-micrometer sections were mounted on carbon-coated nylon film over a Be grid, transferred cold to the scanning microscope, and maintained at -175 degrees C during analysis. The scanning transmission mode was used for imaging. Structural preservation was of good quality and allowed identification of tissue compartments. Tissue mass (solutes + water) was determined by continuum radiation from regions of interest. After drying in the SEM, elemental composition of morphologically defined compartments (solutes) was determined by analysis of specific x-rays, and total dry mass by continuum. Na, K, Cl, and H2O contents in collecting-duct cells (CDC), papillary epithelial cells (PEC), and interstitial cells (IC) and space were measured. Cells had lower water content (mean 58.7%) than interstitium (77.5%). Intracellular K concentrations (millimoles per kilogram wet weight) were unremarkable (79-156 mm/kg wet weight); P was markedly higher in cells than in interstitium. S was the same in all compartments. Intracellular Na levels were extremely high (CDC, 344 +/- 127 SD mm/kg wet weight; PEC, 287 +/- 105; IC, 898 +/- 194). Mean interstitial Na was 590 +/- 119 mm/kg wet weight. CI values paralleled those for Na. If this Na is unbound, then these data suggest that renal papillary interstitial cells adapt to their hyperosmotic environment by a Na-uptake process.


Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5746
Author(s):  
Alexis Aguilar-Arevalo ◽  
Xavier Bertou ◽  
Carles Canet ◽  
Miguel Angel Cruz-Pérez ◽  
Alexander Deisting ◽  
...  

This paper explores the prospect of CMOS devices to assay lead in drinking water, using calorimetry. Lead occurs together with traces of radioisotopes, e.g., 210Pb, producing γ-emissions with energies ranging from 10 keV to several 100 keV when they decay; this range is detectable in silicon sensors. In this paper we test a CMOS camera (Oxford Instruments Neo 5.5) for its general performance as a detector of X-rays and low energy γ-rays and assess its sensitivity relative to the World Health Organization upper limit on lead in drinking water. Energies from 6 keV to 60 keV are examined. The CMOS camera has a linear energy response over this range and its energy resolution is for the most part slightly better than 2%. The Neo sCMOS is not sensitive to X-rays with energies below ∼10 keV. The smallest detectable rate is 40±3mHz, corresponding to an incident activity on the chip of 7±4Bq. The estimation of the incident activity sensitivity from the detected activity relies on geometric acceptance and the measured efficiency vs. energy. We report the efficiency measurement, which is 0.08(2)% (0.0011(2)%) at 26.3keV (59.5keV). Taking calorimetric information into account we measure a minimal detectable rate of 4±1mHz (1.5±1mHz) for 26.3keV (59.5keV) γ-rays, which corresponds to an incident activity of 1.0±6Bq (57±33Bq). Toy Monte Carlo and Geant4 simulations agree with these results. These results show this CMOS sensor is well-suited as a γ- and X-ray detector with sensitivity at the few to 100 ppb level for 210Pb in a sample.


2000 ◽  
Vol 177 ◽  
pp. 355-358
Author(s):  
L. Kuiper ◽  
W. Hermsen ◽  
F. Verbunt ◽  
A. Lyne ◽  
I. Stairs ◽  
...  

AbstractWe report on the likely detection of pulsed high-energyγ-rays from the binary millisecond pulsar PSR J0218+4232 in 100–1000 MeV data from CGRO EGRET. Imaging analysis demonstrates that the highly significantγ-ray source 2EG J0220+4228 (∼ 10σ) is for energies > 100 MeV positionally consistent with both PSR J0218+4232 and the BL Lac 3C66A. However, above 1 GeV 3C66A is the evident counterpart, whereas between 100 and 300 MeV PSR J0218+4232 is the most likely one. Timing analysis using one ephemeris valid for all EGRET observations yields in the 100-1000 MeV range a double-pulse profile at a ∼ 3.5σsignificance level. The phase separation is similar to the component separation of ∼ 0.47 observed at X-rays. A comparison of theγ-ray profile with the 610 MHz radio profile in absolute phase shows that the twoγ- ray pulses coincide with two of the three emission features in the complex radio profile.


Sign in / Sign up

Export Citation Format

Share Document