scholarly journals Hemp Shive-Based Bio-Composites Bounded by Potato Starch Binder: The Roles of Aggregate Particle Size and Aspect Ratio

2022 ◽  
Vol 23 (2) ◽  
pp. 220-234
Author(s):  
Ina Pundiene ◽  
Laura Vitola ◽  
Jolanta Pranckeviciene ◽  
Diana Bajare
2021 ◽  
Vol 13 (9) ◽  
pp. 5086
Author(s):  
Fatih Selimefendigil ◽  
Hakan F. Oztop ◽  
Ali J. Chamkha

Single and double impinging jets heat transfer of non-Newtonian power law nanofluid on a partly curved surface under the inclined magnetic field effects is analyzed with finite element method. The numerical work is performed for various values of Reynolds number (Re, between 100 and 300), Hartmann number (Ha, between 0 and 10), magnetic field inclination (γ, between 0 and 90), curved wall aspect ratio (AR, between 01. and 1.2), power law index (n, between 0.8 and 1.2), nanoparticle volume fraction (ϕ, between 0 and 0.04) and particle size in nm (dp, between 20 and 80). The amount of rise in average Nusselt (Nu) number with Re number depends upon the power law index while the discrepancy between the Newtonian fluid case becomes higher with higher values of power law indices. As compared to case with n = 1, discrepancy in the average Nu number are obtained as −38% and 71.5% for cases with n = 0.8 and n = 1.2. The magnetic field strength and inclination can be used to control the size and number or vortices. As magnetic field is imposed at the higher strength, the average Nu reduces by about 26.6% and 7.5% for single and double jets with n greater than 1 while it increases by about 4.78% and 12.58% with n less than 1. The inclination of magnetic field also plays an important role on the amount of enhancement in the average Nu number for different n values. The aspect ratio of the curved wall affects the flow field slightly while the average Nu variation becomes 5%. Average Nu number increases with higher solid particle volume fraction and with smaller particle size. At the highest particle size, it is increased by about 14%. There is 7% variation in the average Nu number when cases with lowest and highest particle size are compared. Finally, convective heat transfer performance modeling with four inputs and one output is successfully obtained by using Adaptive Neuro-Fuzzy Interface System (ANFIS) which provides fast and accurate prediction results.


2021 ◽  
Vol 1035 ◽  
pp. 143-151
Author(s):  
Li Chong Zhang ◽  
Wen Yong Xu ◽  
Zhou Li ◽  
Liang Zheng ◽  
Yu Feng Liu ◽  
...  

The effect of particle size and shape on flowability of FGH96 superalloy powder was investigated by field emission scanning electron microscopy (FE-SEM), laser particle size analyzer (LPSA) and X-ray photoelectron spectroscopy (XPS). The results showed that the powder flowability basically presented a decreasing trend as the median diameter decreased. The Hall velocity of the five median diameter powders (50=203.9 μm, 106.3 μm, 83.2 μm, 73.8 μm, 19.9 μm) was 27.18 s/50g, 23.25 s/50g, 23.86 s/50g, 23.42 s/50g and none, respectively. The surface oxides/ hydroxide/nitride of the five median diameter powders were mostly the same, mainly including Al2O3, Cr2O3, MoO3, Nb2O5, Ni (OH)2, TiO2 and TiN. The median diameter 50, shape factors (circularity, aspect ratio, roundness, solidity) and fractal dimension were selected to quantitatively characterize particle size and shape. For the same fluctuation value of powder flowability, the roundness and solidity showed lower sensitivity. Compared with the two shape factors, the sensitivity of circularity and aspect ratio was at an intermediate level, while the median diameter and fractal dimension displayed higher sensitivity. The median diameter and fractal dimension can be used to characterize the principal variation of flowability. The circularity and aspect ratio can be utilized to characterize the variation of flowability supplementally.


2008 ◽  
Vol 587-588 ◽  
pp. 133-137 ◽  
Author(s):  
Abílio P. Silva ◽  
Ana M. Segadães ◽  
Tessaleno C. Devezas

The success of a refractory castable is largely due to the quality of its properties and ease of application. Self-flow refractory castables (SFRC), with high flowability index (>130%), can be easily accommodated in a mould without the application of external energy, being ideal for the manufacture of monolithic linings. SFRC castables without cement require a matrix of very fine particles, which guarantees improved rheological behaviour and performs the role of the binder in the absence of the refractory cement. The presence of the aggregate (coarse particles) hinders the flowability index, but improves the castable mechanical strength and reduces firing shrinkage, and also contributes to the reduction of the castable costs. The control of the maximum paste thickness (MPT) allows the reduction of the coarse particles interference, minimizing the number of contact points among the grains and avoiding the formation of an aggregate skeleton that impairs the flowability of the mixture. In the present work, 100% alumina SFRCs without cement were produced with a fixed matrix of fine particles, whose particle size distribution was optimized using statistical techniques (mixtures design and triangular response surfaces). Different aggregate particle size distributions were used, with several MPT values, with the objective of evaluating which was the mean distance that maximized the flowability index, simultaneously ensuring good mechanical strength for the refractory castable. Ensuring a minimum surface area of 2.22m2/g, the mixtures reach the self-flow turning point with a minimum water content and the maximum flowability is obtained for an aggregate particle size distribution modulus of q=0.22, and consequently an optimized MPT value. SFRC with high mechanical strength (>60MPa) were obtained.


2013 ◽  
Vol 664 ◽  
pp. 926-930
Author(s):  
Wei Zhang ◽  
Xiao Dong Wang ◽  
Rui Sun ◽  
Jian Wei Sun ◽  
Wei Han

The effects of EGR operating mode on particulate morphology were investigated for a 5.79-liter diesel engine which was equipped with a turbocharged and inter-cooled air induction system, a common-rail direct fuel injection system, and an EGR system. Morphological characteristics, such as primary particle size, number concentration and aggregate particle size were investigated by a transmission electron microscope (TEM) analysis and a electrical low pressure impactor (ELPI) under engine operating conditions of 0.41 in fuel/air ratio at different exhaust gas recirculation (EGR) rate from 0~35%. The experimental results indicated that primary particle were in the range of 17.05nm~18.34nm, which increased with increased EGR rate. As EGR rate increased, aggregate particle size were measured in a narrow range from 120nm to 170nm.


2004 ◽  
Vol 58 (7-8) ◽  
pp. 322-326 ◽  
Author(s):  
Miodrag Lazic ◽  
Suzana Raskovic ◽  
Mihajlo Stankovic ◽  
Vlada Veljkovic

The hydrolysis of potato starch using one (Termamyl or Fungamyl) and two combined (Termamyl and Supersan) commercial enzyme preparations and ethanol production from the hydrolysates obtained using the yeast Saccharomyces cerevisiae were studied. Potato tubers were previously prepared as mash or flour. The study dealt with the effects of the hydromodulus (1:1 and 1:0.5), particle size (0.1, 0.2 and 0.4 mm) as well as the type and concentration of enzyme on the enzymatic hydrolysis of potato starch. The highest dextrose equivalent (79.3%, DE) was achieved during two-enzyme hydrolysis (combination of two enzyme preparations: Termamyl 14.4 KNU/dm3 and Supersan 28.8 AGU/dm3) of starch from potato flour (particle size: 0.1-0.2 mm) at an inital starch concentration of 75 g/dm3. During the two-enzyme hydrolysis, a lower DE (61%) was achieved when potato mash was used as a starch source. Using Termamyl (14,4 KNU/dm3) and potato mash a higher DE was achieved at the hydromodulus 1:1 (51.2%) than at the hydromodulus 1:0.5 (40.9%). The highest ethanol concentration (5.0 vol%) was obtained when the hydrolyzate of potato flour from the two-enzyme process was used as a substrate for alcoholic fermentation.


Sign in / Sign up

Export Citation Format

Share Document