scholarly journals An Analysis on the Climate Change Exposure of Fisheries and Fish Species in the Southern Sea under the RCP Scenarios: Focused on Sea Temperature Variation

2016 ◽  
Vol 47 (4) ◽  
pp. 31-44 ◽  
Author(s):  
Bong-Tae Kim ◽  
Joon-Soo Lee ◽  
Young-Sang Suh
Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2758
Author(s):  
Daniel Mameri ◽  
Rui Rivaes ◽  
Maria Teresa Ferreira ◽  
Stefan Schmutz ◽  
José Maria Santos

Climate change represents a major challenge for the management of native fish communities in Mediterranean rivers, as reductions in discharge may lead to a decrease in passability through small barriers such as weirs, both in temporary and perennial rivers. Through hydraulic modelling, we investigated how discharges from a large hydropower plant in the Tagus River are expected to affect the passability of native freshwater fish species through a rock weir (Pego, Portugal), equipped with a nature-like fish ramp. We considered not only mean daily discharge values retrieved from nearby gauging stations (1991–2005) for our flow datasets, but also predicted discharge values based on climatic projections (RCP) until the end of the century (2071–2100) for the Tagus River. Results showed that a minimum flow of 3 m3 s−1 may be required to ensure the passability of all species through the ramp and that passability was significantly lower in the RCP scenarios than in the historical scenario. This study suggests that climate change may reduce the passability of native fish species in weirs, meaning that the construction of small barriers in rivers should consider the decreases in discharge predicted from global change scenarios for the suitable management of fish populations.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1870
Author(s):  
Matteo Gentilucci ◽  
Abdelraouf A. Moustafa ◽  
Fagr Kh. Abdel-Gawad ◽  
Samira R. Mansour ◽  
Maria Rosaria Coppola ◽  
...  

This paper characterizes non-indigenous fish species (NIS) and analyses both atmospheric and sea surface temperatures for the Mediterranean coast of Egypt from 1991 to 2020, in relation to previous reports in the same areas. Taxonomical characterization depicts 47 NIS from the Suez Canal (Lessepsian/alien) and 5 from the Atlantic provenance. GenBank accession number of the NIS mitochondrial gene, cytochrome oxidase 1, reproductive and commercial biodata, and a schematic Inkscape drawing for the most harmful Lessepsian species were reported. For sea surface temperatures (SST), an increase of 1.2 °C to 1.6 °C was observed using GIS software. The lack of linear correlation between annual air temperature and annual SST at the same detection points (Pearson r) could suggest a difference in submarine currents, whereas the Pettitt homogeneity test highlights a temperature breakpoint in 2005–2006 that may have favoured the settlement of non-indigenous fauna in the coastal sites of Damiette, El Arish, El Hammam, Alexandria, El Alamain, and Mersa Matruh, while there seems to be a breakpoint present in 2001 for El Sallum. This assessment of climate trends is in good agreement with the previous sightings of non-native fish species. New insights into the assessment of Egyptian coastal climate change are discussed.


2013 ◽  
Vol 91 (4) ◽  
pp. 413-429 ◽  
Author(s):  
Xiaoge XIN ◽  
Li ZHANG ◽  
Jie ZHANG ◽  
Tongwen WU ◽  
Yongjie FANG

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
J. J. H. Nati ◽  
M. B. S. Svendsen ◽  
S. Marras ◽  
S. S. Killen ◽  
J. F. Steffensen ◽  
...  

AbstractHow ectothermic animals will cope with global warming is a critical determinant of the ecological impacts of climate change. There has been extensive study of upper thermal tolerance limits among fish species but how intraspecific variation in tolerance may be affected by habitat characteristics and evolutionary history has not been considered. Intraspecific variation is a primary determinant of species vulnerability to climate change, with implications for global patterns of impacts of ongoing warming. Using published critical thermal maximum (CTmax) data on 203 fish species, we found that intraspecific variation in upper thermal tolerance varies according to a species’ latitude and evolutionary history. Overall, tropical species show a lower intraspecific variation in thermal tolerance than temperate species. Notably, freshwater tropical species have a lower variation in tolerance than freshwater temperate species, which implies increased vulnerability to impacts of thermal stress. The extent of variation in CTmax among fish species has a strong phylogenetic signal, which may indicate a constraint on evolvability to rising temperatures in tropical fishes. That is, in addition to living closer to their upper thermal limits, tropical species may have higher sensitivity and lower adaptability to global warming compared to temperate counterparts. This is evidence that freshwater tropical fish communities, worldwide, are especially vulnerable to ongoing climate change.


2021 ◽  
Author(s):  
Bernardo Bastien-Olvera ◽  
Frances Moore

Abstract It is well established that temperature variability affects a range of outcomes relevant to human welfare, including health (Gasparrini et al., 2017) emotion and mood (Baylis et al., 2018), and productivity across a number of economic sectors (Carleton & Hsiang, 2016; Dell et al., 2014). However, a critical and still unresolved empirical question is whether temperature variation has a long-lasting effect on economic productivity and, therefore, whether damages compound over time in response to long-lived changes in temperature expected with climate change. Several studies have identified a relationship between temperature and GDP (Burke et al., 2015; Dell et al., 2012; Kalkuhl & Wenz, 2020), but empirical evidence as to the persistence of these effects is still weak. This paper presents a novel approach to isolate the persistent component of temperature effects on output using lower frequency temperature variation. Using three different datasets we find that longer temperature anomalies affect GDP growth as much or more than short-lived anomalies, implying persistent and therefore cumulative effects of climate change on economic output. The population-weighted global effect of -0.8 pp per degree is sufficient to reduce per-capita income in 2100 by 44% under RCP6, approximately an order of magnitude larger than damages currently represented in cost-benefit integrated assessment models (Diaz & Moore, 2017).


2016 ◽  
Vol 64 (3) ◽  
Author(s):  
David A. Moo-Llanes

The leishmaniasis is a complex disease system, caused by the protozoan parasite Leishmania and transmitted to humans by the vector Lutzomyia spp. Since it is listed as a neglected disease according to the World Health Organization, the aim of this study was to determine the current and future niche of cutaneous and visceral leishmaniasis in the Neotropical region. We built the ecological niche model (ENM) of cutaneous (N= 2 910 occurrences) and visceral (N= 851 occurrences) leishmaniasis using MaxEnt algorithm. Nine bioclimatic variables (BIO1, BIO4, BIO5, BIO6, BIO7, BIO12, BIO13, BIO14, BIO15 (downloaded from the Worldclim) and disease occurrences data were used for the construction of ENM for three periods (current, 2050 and 2070) and four climate change scenarios (RCP 2.6, 4.5, 6.0 y 8.5). We analyzed the number of pixels occupied, identity niche, modified niche (stable, loss, and gain) and seasonality. Our analyses indicated the expansion for cutaneous leishmaniasis (CL), a comparison for visceral leishmaniasis (VL). We rejected the null hypothesis of niche identity between CL and VL with Hellinger’s index = 0.91 (0.92-0.98) and Schoener’s Index = 0.67 (0.85-1.00) but with an overlap niche of 56.3 %. The differences between the two leishmaniasis types were detected in relation to RCP scenarios and niche shifts (area gained / loss). Seasonality was more important for CL. We provided a current picture of CL and VL distributions and the predicted distributional changes associated to different climate change scenarios for the Neotropical region. We can anticipate that increasing range is likely although it will depend locally on the future trends in weather seasonality.


2022 ◽  
Vol 134 ◽  
pp. 108489
Author(s):  
Wenjia Hu ◽  
Jianguo Du ◽  
Shangke Su ◽  
Hongjian Tan ◽  
Wen Yang ◽  
...  

Author(s):  
Olga N. Nasonova ◽  
Yeugeniy M. Gusev ◽  
Evgeny E. Kovalev ◽  
Georgy V. Ayzel

Abstract. Climate change impact on river runoff was investigated within the framework of the second phase of the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP2) using a physically-based land surface model Soil Water – Atmosphere – Plants (SWAP) (developed in the Institute of Water Problems of the Russian Academy of Sciences) and meteorological projections (for 2006–2099) simulated by five General Circulation Models (GCMs) (including GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM, and NorESM1-M) for each of four Representative Concentration Pathway (RCP) scenarios (RCP2.6, RCP4.5, RCP6.0, and RCP8.5). Eleven large-scale river basins were used in this study. First of all, SWAP was calibrated and validated against monthly values of measured river runoff with making use of forcing data from the WATCH data set and all GCMs' projections were bias-corrected to the WATCH. Then, for each basin, 20 projections of possible changes in river runoff during the 21st century were simulated by SWAP. Analysis of the obtained hydrological projections allowed us to estimate their uncertainties resulted from application of different GCMs and RCP scenarios. On the average, the contribution of different GCMs to the uncertainty of the projected river runoff is nearly twice larger than the contribution of RCP scenarios. At the same time the contribution of GCMs slightly decreases with time.


PLoS ONE ◽  
2012 ◽  
Vol 7 (12) ◽  
pp. e52818 ◽  
Author(s):  
Simon A. Morley ◽  
Stephanie M. Martin ◽  
Robert W. Day ◽  
Jess Ericson ◽  
Chien-Houng Lai ◽  
...  

<em>Abstract</em>.—Stream fish are expected to be influenced by climate change as they are ectothermic animals living in lotic systems. Using fish presence–absence records in 1,110 stream sites across France, our study aimed at (1) modeling current and future distributions of 35 stream fish species, (2) using an ensemble forecasting approach (i.e., several general circulation models [GCM] × greenhouse gas emission scenarios [GES] × statistical species distribution models [SDM] combinations) to quantify the variability in the future fish species distribution due to each component, and (3) assessing the potential impacts of climate change on fish species distribution and assemblage structure by using a consensus method that accounted for the variability in future projections.


Sign in / Sign up

Export Citation Format

Share Document