Parasite risks from raw meat-based diets for companion animals

2020 ◽  
Vol 25 (11) ◽  
pp. 261-267
Author(s):  
Paul A. M. Overgaauw

In industrialised countries, dogs and cats are more often fed raw meat-based diets. There are microbial hazards associated with raw meat and these can introduce the risk of insufficient nutrition, as a result of nutritional imbalances and deficiencies. A literature review has been carried out to evaluate the risks of parasite infections in companion animals resulting from raw meat-based diets. Parasites present in raw meat use dogs and cats as part of their life cycle, these include protozoa such as Toxoplasma, Sarcocystis, Cystoisospora, Neospora and Hammondia; the nematodes Toxocara spp. and Trichinella; and the tapeworms Taenia spp., Echinococcus granulosus and E. multilocularis. Because of the lack of prevalence data, a valuable risk analysis is difficult. However, the life cycles demonstrate that eating raw meat-based diets and prey animals, can be a route of infection. Such agents can also be present in slaughtered animals. Infections can induce disease in intermediate hosts, but also in humans and other animal species, as an environment can be contaminated with oocysts or eggs. Several parasites can be transmitted via the alimentary route when raw meat-based diets are fed to companion animals. The best prevention method is to feed your companion animals commercial food or to cook meat and organs before feeding.

2013 ◽  
Vol 50 (1) ◽  
pp. 27-38 ◽  
Author(s):  
I. Torre ◽  
A. Arrizabalaga ◽  
C. Feliu ◽  
A. Ribas

AbstractParasites have been recognized as indicators for natural or man-induced environmental stress and perturbation. In this article, we investigated the role of two non-exclusive hypotheses on the response of helminths of wood mice to fire perturbation: 1) a reduction of the helminth infracommunity (species richness) in post-fire areas due to the temporal lack of worms with indirect (complex) life cycles linked to intermediate hosts that are more specialized than the final host, and 2) an increase of the abundance of helminths with direct (simple) life cycles as a response of increasing abundances of the final host, may be in stressful conditions linked to the post-fire recolonization process.We studied the helminth infracommunities of 97 wood mice in two recently burned plots (two years after the fire) and two control plots in Mediterranean forests of NE Spain. Species richness of helminths found in control plots (n = 14) was twice large than in burned ones (n = 7). Six helminth species were negatively affected by fire perturbation and were mainly or only found in unburned plots. Fire increased the homogeneity of helminth infracommunities, and burned plots were characterised by higher dominance, and higher parasitation intensity. We found a gradient of frequency of occurrence of helminth species according to life cycle complexity in burned areas, being more frequent monoxenous (66.6 %), than diheteroxenous (33.3 %) and triheteroxenous (0 %), confirming the utility of helminths as bioindicators for ecosystem perturbations. Despite the short period studied, our results pointed out an increase in the abundance and prevalence of some direct life cycle helminths in early postfire stages, whereas indirect life cycle helminths were almost absent. A mismatch between the final host (that showed a fast recovery shortly after the fire), and the intermediate hosts (that showed slow recoveries shortly after the fire), was responsible for the loss of half of the helminth species.


Parasitology ◽  
1983 ◽  
Vol 86 (1) ◽  
pp. 147-160 ◽  
Author(s):  
J. H. Ali ◽  
J. Riley

SUMMARYThe life-cycles of two closely related cephalobaenid pentastomids, Raillietiella gehyrae and Raillietiella frenatus, which utilize geckos as definitive hosts and cockroaches as intermediate hosts, have been investigated in detail. Early development in the fat-body of cockroaches involves 2 moults to an infective, 3rd-stage larva which appears from 42–44 days post-infection. Complete development in geckos involves a further 5 moults in the case of males and 6 for females. Males mature precociously and copulation is a once-in-a-lifetime event which occurs around day 80 post-infection when both sexes are the same size but the uterus of the female is undeveloped. Sperm, stored in the spermathecae, is used to fertilize oocytes which slowly accumulate in the developing saccate uterus. Patency commences when the uterus carries approximately 4000–5500 eggs but only 25–36 % of these contain fully developed primary larvae. Since only mature eggs are deposited, we postulate that the vagina (?) of the female must be equipped with a selective filter that allows through large eggs but retains smaller, immature eggs. Thus the only limit on fecundity is the total number of sperms in the spermathecae and this is precisely the same factor that constrains egg production in the advanced order Porocephalida.


2019 ◽  
Vol 53 (1) ◽  
pp. 13-22 ◽  
Author(s):  
E. P. Zhytova ◽  
L. D. Romanchuk ◽  
S. V. Guralska ◽  
O. Yu. Andreieva ◽  
M. V. Shvets

Abstract This is the first review of life cycles of trematodes with parthenitae and larvae in freshwater gastropods from forest biocoenoses of Ukrainian Polissia. Altogether 26 trematode species from 14 families were found circulating in 13 ways in molluscs from reservoirs connected with forest ecosystems of the region. Three-host life cycle is typical of 18 trematode species, two-host life cycle has found in 7 species, and four-host cycles has found in one species. Alaria alata Goeze, 1782, has three-host (Shults, 1972) and four-host cycles. Opisthioglyphe ranae (Froehlich, 1791) can change three-host life cycle to two-host cycle replacing the second intermediate host (Niewiadomska et al., 2006) with the definitive host. Species with primary two-host life cycle belong to Notocotylidae Lühe, 1909, Paramphistomidae Fischoeder, 1901 and Fasciolidae Railliet, 1758 families. Trematodes with three-host cycle have variable second intermediate hosts, including invertebrates and aquatic or amphibious vertebrates. Definitive hosts of trematodes are always vertebrates from different taxonomic groups. The greatest diversity of life cycles is typical for trematodes of birds. Trematodes in the forest biocoenoses of Ukrainian Polissia infect birds in six ways, mammals in three, amphibians in four, and reptiles in one way. The following species have epizootic significance: Liorchis scotiae (Willmott, 1950); Parafasciolopsis fasciolaemorpha Ejsmont, 1932; Notocotylus seineti Fuhrmann, 1919; Catatropis verrucosa (Frölich, 1789) Odhner, 1905; Cotylurus cornutus (Rudolphi, 1808); Echinostoma revolutum (Fröhlich, 1802) Dietz, 1909; Echinoparyphium aconiatum Dietz, 1909; Echinoparyphium recurvatum (Linstow, 1873); Hypoderaeum conoideum (Bloch, 1782) Dietz, 1909; Paracoenogonimus ovatus Kasturada, 1914; Alaria alata Goeze, 1782.


Parasitology ◽  
1933 ◽  
Vol 25 (4) ◽  
pp. 518-545 ◽  
Author(s):  
S. Benton Talbot

1. The life histories of Lechriorchis primus Stafford, L. tygarti n.sp. and Caudorchis eurinus n.gen. et sp. have been experimentally completed in three hosts, the first complete life histories to be worked out for species of the subfamily Reniferinae.2. The definitive hosts of the three forms were found to be two species of garter snakes, Thamnophis sauritus and T. sirtalis.3. Three species of snails, Physella gyrina, P. parkeri, and P. ancillaria, have been found to serve as the first intermediate host in the life cycles of Lechriorchis primus and Caudorchis eurinus n.gen. et sp., and two species of snails, Physella gyrina and P. heterostropha, in the life cycle of Lechriorchis tygarti n.sp.4. The tadpoles of two species of frogs, Rana clamitans and R. pipiens, were found to serve as the second intermediate hosts in the life cycles of all three trematodes. The cercariae penetrate larvae of Triturus and small fish, but live only a short time in these animals.5. Every stage in the life history of Lechriorchis primus, including egg, miracidium, mother sporocyst, daughter sporocyst, cercaria, metacercaria, and developmental stages in the definitive host, has been described in detail.6. The mother sporocyst of forms having a stylet cercaria is described for the first time.7. The flame cell pattern of the cercariae of L. primus, L. tygarti n.sp., and Caudorchis eurinus n.gen. et sp. has been determined to be of the “2 × 6 × 3’ type. Also the adult stage of C. eurinus was determined to have the same type.8. It has been pointed out that the life histories of the members of the subfamily are uniform in that their life history stages display a remarkable similarity.9. It has been suggested that this uniform type of life cycle and remarkable similarity of larval stages offer the most logical basis for establishing the subfamily Reniferinae as a natural group.


2017 ◽  
Vol 91 (6) ◽  
pp. 647-656 ◽  
Author(s):  
I. Blasco-Costa ◽  
R. Poulin

AbstractMany helminth taxa have complex life cycles, involving different life stages infecting different host species in a particular order to complete a single generation. Although the broad outlines of these cycles are known for any higher taxon, the details (morphology and biology of juvenile stages, specific identity of intermediate hosts) are generally unknown for particular species. In this review, we first provide quantitative evidence that although new helminth species are described annually at an increasing rate, the parallel effort to elucidate life cycles has become disproportionately smaller over time. We then review the use of morphological matching, experimental infections and genetic matching as approaches to elucidate helminth life cycles. Next we discuss the various research areas or disciplines that could benefit from a solid knowledge of particular life cycles, including integrative taxonomy, the study of parasite evolution, food-web ecology, and the management and control of parasitic diseases. Finally, we end by proposing changes to the requirements for new species descriptions and further large-scale attempts to genetically match adult and juvenile helminth stages in regional faunas, as part of a plea to parasitologists to bring parasite life-cycle studies back into mainstream research.


2021 ◽  
Vol 288 (1947) ◽  
Author(s):  
Spencer Froelick ◽  
Laura Gramolini ◽  
Daniel P. Benesh

Parasitic worms (i.e. helminths) commonly infect multiple hosts in succession before reproducing. At each life cycle step, worms may fail to infect the next host, and this risk accumulates as life cycles include more successive hosts. Risk accumulation can be minimized by having high establishment success in the next host, but comparisons of establishment probabilities across parasite life stages are lacking. We compiled recovery rates (i.e. the proportion of parasites recovered from an administered dose) from experimental infections with acanthocephalans, cestodes and nematodes. Our data covered 127 helminth species and 16 913 exposed hosts. Recovery rates increased with life cycle progression (11%, 29% and 46% in first, second and third hosts, respectively), because larger worm larvae had higher recovery, both within and across life stages. Recovery declined in bigger hosts but less than it increased with worm size. Higher doses were used in systems with lower recovery, suggesting that high doses are chosen when few worms are expected to establish infection. Our results indicate that growing in the small and short-lived hosts at the start of a complex life cycle, though dangerous, may substantially improve parasites' chances of completing their life cycles.


1957 ◽  
Vol 31 (4) ◽  
pp. 203-224 ◽  
Author(s):  
Roy C. Anderson

The evolution of the life cycles of the members of the family Dipetalonematiidae Wehr, 1935 (Filarioidea) is considered in the light of existing knowledge of spirurid nematodes. The hypothesis that the life cycles of the dipetalonematids originated from life cycles similar to those of Draschia megastoma, Habronema muscae and H. microstoma is considered to be incorrect. Alternatively, it is pointed out that in the primitive subfamily Thelaziinae Baylis and Daubney, 1926 there are forms with typical spiruroid life cycles (Rhabdochona ovifilamenta), forms with life cycles approaching those of the dipetalonematids (Thelazia spp.), and forms with life cycles intermediate between these two (Oxyspirura spp.). It is suggested that intestinal species similar to Rhabdochona gave rise to the more specialized spiruroids and forms that left the gut (Oxyspirura, Thelazia) gave rise to the dipetalonematids.The dipetalonematids are believed to have originated from nematodes resembling the species of Thelazia and having life cycles like those of T. rhodesii, T. skrjabini and T. gulosa. Some of these worms established themselves in subcutaneous tissues. Like Parafilaria multipapillosa, they released their eggs through a break in the skin of the definitive host, thus causing a skin lesion that attracted various haematophagous arthropods which finally became involved as intermediate hosts in the life cycle. Certain species like the members of Parafilaria and Stephanofilaria (?) came to rely upon intermediate hosts that were unable to break the skin of the definitive host (Musca) and cutaneous lesions became permanent features of their life cycles. Other species became dependent upon intermediate hosts that could puncture the skin (mosquitoes, simuliids etc.) and skin lesions became unnecessary to the life cycle. The larvae of these worms then began to spread into the tissues of the skin, as found in Stephanofilaria, Onchocerca, and some species of Dipetalonema, and the infective larvae developed the ability to penetrate into the wound made by the intermediate host and perhaps, in some cases, the intact skin. Ultimately the larvae of some species habitually entered, or were deposited into, the blood stream and the adult worms were then free to colonize the vertebrate body as their larvae would then be available to the intermediate host no matter where the latter fed on the body of the definitive host; this group of worms gave rise to the many members of the family Dipetalonematidae.The family Filariidae Claus, 1883 is briefly reviewed in the light of the above hypothesis. It is pointed out that many species, e.g. Diplotriaeninae Skrjabin, 1916, live in the air sacs of reptiles and birds and probably have life cycles similar to that of Diplotriaenoides translucidus, i.e. the eggs pass through the lungs, up the trachea and out in the faeces. It is thought that these forms may represent a separate line of evolution from that which gave rise to the Dipetalonematidae. Certain genera (Lissonema, Aprocta), occurring in the orbits of birds, probably have life cycles like Thelazia or Oxyspirura. Many other genera occurring in superficial muscles and subcutaneous tissues (Squamofilaria, Ularofilaria, Tetracheilonema, Pelecitus, Monopetalonema) may release their eggs through some sort of skin lesion. Studies on these forms are urgently needed as the details of their life cycles may shed fresh light on the origins of the more specialized filarioids.


2016 ◽  
Vol 91 (5) ◽  
pp. 589-596 ◽  
Author(s):  
S.M. Rodríguez ◽  
G. D'Elía ◽  
N. Valdivia

AbstractResolving complex life cycles of parasites is a major goal of parasitological research. The aim of this study was to analyse the life cycle of two species of the genusProfilicollis,the taxonomy of which is still unstable and life cycles unclear. We extracted individuals ofProfilicollisfrom two species of crustaceans (intermediate hosts) and four species of seagulls (definitive hosts) from sandy-shore and estuarine habitats along the south-east Pacific coast of Chile. Mitochondrial DNA analyses showed that two species ofProfilicollisinfected intermediate hosts from segregated habitats: whileP. altmanilarvae infected exclusively molecrabs of the genusEmeritafrom fully marine habitats,P. antarcticuslarvae infected the crabHemigrapsus crenulatusfrom estuarine habitats. Moreover,P. altmanicompleted its life cycle in four seagulls,Chroicocephalus maculipennis, Leucopheus pipixcan, Larus modestusandL. dominicanus,whileP. antarcticus, on the other hand, completed its life cycle in the kelp gullL. dominicanus. Accordingly, our results show that two congeneric parasites use different and spatially segregated species as intermediate hosts, and both are capable of infecting one species of definitive hosts. As such, our analyses allow us to shed light on a complex interaction network.


2020 ◽  
Vol 1 (10) ◽  
pp. 26-35
Author(s):  
E. A. SHUBINA ◽  
◽  
Yu. A. KOMAROVSKY ◽  
A. V. MERKUSHEV ◽  
◽  
...  

The article is devoted to the study of the largest mergers and acquisitions (M&A, “Mergers & Acquisitions”) in Russia for 2017–2019. (the acquired block of shares is not less than 99%). The concept of life cycles of organizations and theoretical aspects of mergers and acquisitions are described. The stages of the life cycle of the merged and reorganized companies, the goals of mergers and acquisitions, depending on the stages of the life cycle are analyzed.


2019 ◽  
Vol 15 (01) ◽  
pp. 83-84
Author(s):  
B J Thakre ◽  
Joice P Joseph ◽  
Binod Kumar ◽  
Nilima Brahmbhatt ◽  
Krishna Gamit

Taenia spp. are long, segmented, parasitic tapeworms and are relatively uncommon in canine gastrointestinal diseases compared to other tapeworms like Dipylidium caninum. These parasites have an indirect life cycle, cycling between definitive and intermediate hosts. Dogs act as definitive hosts of different species of Taenia including Taenia multiceps, Taenia serialis, Taenia crassiceps, Taenia hydatigena, Taenia pisiformis, etc. Taenia multiceps is of greatest zoonotic relevance in human. In the definitive host, it causes only mild infection. Larvae are more likely to cause disease than adult tapeworms. Taeniasis in pets should be cautiously handled because of its zoonotic importance. This communication reports a case of 3 months old pup suffering from Taenia infection that was successfully managed with a combination of praziquantel and fenbendazole.


Sign in / Sign up

Export Citation Format

Share Document