scholarly journals Synthesis of Magnetite Nanoparticles by Biological Technique

2017 ◽  
Vol 14 (2) ◽  
pp. 631-633 ◽  
Author(s):  
Hamid Reza Ghorbani ◽  
Hossein Pazoki ◽  
Ali Shokuhi Rad

ABSTRACT: The development of synthesis routes for oxide nanoparticles is a matter of considerable topical attention. Green synthesis of nanoparticles with the help of microorganisms as reducing agents is an efficient, cost effective, fast and eco-friendly in nature. This paper presents a simple technique to synthesize magnetite (Fe3O4) nanoparticles. In this routine, an aqueous solution of ferrous and ferric salts was mixed with Magnetospirillum and heated for 10 minutes at 70℃. UV–vis absorption spectra, dynamic light scattering (DLS) and transmission electron microscopy (TEM) have been used to illustrate the form process and explain the structure of the magnetite nanoparticles. UV–Vis absorption spectrum showed surface plasmon resonance absorption bands about 240 nm that confirmed magnetite nanoparticles existence. We obtain magnetite nanoparticles of size 42±20 nm after separation and washing procedures by dynamic light scattering (DLS).

2015 ◽  
Vol 11 (8) ◽  
pp. 3866-3872
Author(s):  
E.A. Masimov ◽  
Etibar Hummat Ismailov ◽  
S.Y. Odzhaqverdiyeva

Dynamic light scattering (DLS) method in combination with the UV/VIS spectrophotometry is used to study the interaction of polyethylene- glycols with a molecular weight  6000 ( PEG6000 ) with sodium salts of citric and succinic acids in aqueous solutions. The values of density, viscosity, refractive and diffusion indexes, the values of the hydrodynamic diameter, wavelength electronic absorption bands for PEG6000 aqueous solutions, their mixtures with succinic and citric acids are determined. It was shown that depending on the composition of the solutions the values of hydrodynamic diameter for aqueous solutions containing 1-5 wt.% PEG6000 and their mixtures with succinic and citric acids (~ 1 wt%) ranges from 3.6 to 5.2 nm. It is assumed that the formation of complexes with the sizes  that are within the above range is due to the features of interaction  and the structure of the complexes formed in solution.


This research was conducted to produce the magnetite (Fe3O4 ) nanoparticles extracted from the industrial millscale waste. Then, the micron size samples were extracted and grounded on the high energy ball milling (HEBM) at various milling time for 4, 8, 12, 16 and 20 h. The formation of nanosized single-phase hexagonal spinel has been observed with XRD analysis as early as 4 h milling time. The FTIR transmission spectrum shows the appearance of a Fe-O functional group for each sample. HRTEM images showed that all the samples had a small particle size of 5-20 nm with uniform distribution. The specific surface area of the 5 adsorbents increased after the 8 h milling time and it showed reduction after that. The magnetite adsorbents then utilized the adsorbent in Cadmium ions removal of the aqueous solution. Fe3O4 with 8 h milling time was able to remove 9.81 mg of cadmium ions with 1 g of adsorbents consume. The removal of the cadmium ions detected related to the particles size, surface areas and saturation magnetization. This research successfully revealed that the higher saturation magnetization contributed to high removal percentages in cadmium ions of aqueous solutions. Fe3O4 extraction from mill scales waste is cost-effective, the process is eco-friendly and thus, potentially to be applied for wastewater treatment.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Emilia Tomaszewska ◽  
Katarzyna Soliwoda ◽  
Kinga Kadziola ◽  
Beata Tkacz-Szczesna ◽  
Grzegorz Celichowski ◽  
...  

Dynamic light scattering is a method that depends on the interaction of light with particles. This method can be used for measurements of narrow particle size distributions especially in the range of 2–500 nm. Sample polydispersity can distort the results, and we could not see the real populations of particles because big particles presented in the sample can screen smaller ones. Although the theory and mathematical basics of DLS technique are already well known, little has been done to determine its limits experimentally. The size and size distribution of artificially prepared polydisperse silver nanoparticles (NPs) colloids were studied using dynamic light scattering (DLS) and ultraviolet-visible (UV-Vis) spectroscopy. Polydisperse colloids were prepared based on the mixture of chemically synthesized monodisperse colloids well characterized by atomic force microscopy (AFM), transmission electron microscopy (TEM), DLS, and UV-Vis spectroscopy. Analysis of the DLS results obtained for polydisperse colloids reveals that several percent of the volume content of bigger NPs could screen completely the presence of smaller ones. The presented results could be extremely important from nanoparticles metrology point of view and should help to understand experimental data especially for the one who works with DLS and/or UV-Vis only.


2019 ◽  
Vol 49 (1) ◽  
pp. 16-33 ◽  
Author(s):  
Farhad Golmohammadi ◽  
Masoud Amiri ◽  
Hussein Gharibi ◽  
Ali Yousefi ◽  
Meysam Safari

AbstractThe aggregation behavior was investigated in mixtures of sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB) (anionic-rich catanionic) solutions. The study was conducted in solutions of water–ethylene glycol (EG) by means of surface tension, conductometry, cyclic voltammetry, zeta potential measurements, transmission electron microscopy (TEM) and dynamic light scattering (DLS) techniques. The degree of counterion dissociation (α), critical micelle concentration, aggregation numbers, interfacial properties, interparticle interaction parameters, and morphology of aggregates were determined. Based on regular solution theory, the cosolvent effects between SDS and CTAB as surfactants were also analyzed for both mixed monolayers at mixed micelles (βM) and the air/liquid interface (βσ). It was shown that the formation of large aggregates occurred in the presence of an excess of anionic surfactant. A phase transition from cylindrical micelles to spherical micelles in the anionic-rich regime was observed with an increase in the EG volume fraction. The inter particle interactions were assessed in terms of cosolvent effects on the micellar surface charge density and the cylindrical-to-spherical morphology change. Zeta potential and size of the aggregates were determined using dynamic light scattering and confirmed the models suggested for the processes taking place in each system.


2008 ◽  
Vol 8 (5) ◽  
pp. 2377-2384 ◽  
Author(s):  
Chang-Yun Quan ◽  
Hua Wei ◽  
Yun-Xia Sun ◽  
Si-Xue Cheng ◽  
Kun Shen ◽  
...  

A series of biocompatible and stimuli-sensitive poly(N-isopropylacrylamide-co-propyl acrylic acid) (P(NIPAAm-co-PAAc)) nanogels were synthesized by emulsion polymerization. In addition, polyethyleneimine (PEI) was further grafted to modify the PNIPAAm-based nanogels. The P(NIPAAm-co-PAAc)-g-PEI nanogels exhibited good thermosensitivity as well as pH sensitivity. Transmission electron microscopy (TEM) showed that the P(NIPAAm-co-PAAc)-g-PEI and P(NIPAAm-co-PAAc) nanogels displayed well dispersed spherical morphology. The mean sizes of the nanogels measured by dynamic light scattering (DLS) were from 100 nm to 500 nm at different temperatures. The cytotoxicity study indicated P(NIPAAm-co-PAAc) nanogels exhibited a better biocompatibility than both PNIPAAm nanogel and P(NIPAAm-co-PAAc)-g-PEI nanogel although all the three kinds of nanogels did not exhibit apparent cytotoxicity. The drug-loaded nanogels, especially the PEI-grafted nanogels, showed temperature-trigged controlled release behaviors, indicating the potential applications as an intelligent drug delivery system.


2018 ◽  
pp. 5-11

Estudio comparativo de la síntesis de nanopartículas de magnetita monodispersas J.J. Atoche Medrano, J. A. Huamani Coaquira Universidad de Brasília, Campus Universitário Darcy Ribeiro, Brasília - CEP 70910-900 DOI: https://doi.org/10.33017/RevECIPeru2015.0001/ Resumen Actualmente el tipo de nanopartículas magnéticas más estudiados son los de estructura cúbica, espinela inversa, porque estos materiales presentan características de gran interés y sus posibles aplicaciones ya que facilitan la construcción de sistemas más complejos. Debemos considerar que debido a la presencia de metales de transición en la superficie de las nanopartículas es que se dan las condiciones para poder funcionalizarlas con otras moléculas a través de grupos funcionales complejos obteniendo materiales con características polares o apolares, dependiendo del tipo de aplicación que se desee utilizar. Teniendo en consideración que cuando se trabaja con sistemas biológicos las nanopartículas son detectadas por el sistema retículo endotelial (SRE), que a través de los macrófagos son los encargados de eliminar algún cuerpo extraño inerte que pudiera estar en el organismo. De esta manera, existe una necesidad de funcionalizar las nanopartículas obtenidas antes de ser administradas en el organismo para evitar ser reconocidas por el SRE. Esta funcionalización es responsable por evitar la aglomeración de las mismas permitiendo que ellas permanezcan en suspensión estable (coloides magnéticos) que pueden ser conducidos a través de campos magnéticos externos. En este trabajo, nosotros mostramos detalladamente los resultados obtenido en la mejora de la ruta de síntesis de un sistema de nano partículas en forma de ferrofluido de magnetita (Fe3O4) utilizando el método de descomposición térmica y comparamos nuestros resultados respecto a otra ruta de síntesis para sistema nano particulados llamado método de co-precipitación química. Para poder medir el tamaño, así como conocer las propiedades morfológicas y estructurales de las nanopartículas se procedió a la caracterización de nanopartículas obtenidas por los métodos de descomposición térmica y co-precipitación química a través de microscopia electrónica de transmisión (MET). Se encontró una distribución de tamaños con un promedio de 8 nm y polidispersión de 0.14. Estos resultados fueron corroborados por los resultados obtenidos mediante análisis de patrones de difracción de rayos X. La estabilidad del ferrofluido obtenido fue medida usando la técnica conocida como DLS (Dynamic Light Scattering), donde fue encontrado un valor de 42.8 mV, que está dentro del valor esperado para un sistema estable, considerando que para un sistema nanopartículado el valor de Zetasiser arriba de 30 mV representa una estabilidad de la suspensión acuosa. Al final de las medidas de caracterización se realizó la medida del valor del potencial de hidrógeno (pH) mediante un pH-metro, para estudiar la biocompatibilidad que presenta nuestra muestra de ferrofluido ya que nuestro interés es que este ferrofluido pueda ser usado como vehículo para direccionar principios activos o fármacos sobre una región específica en el organismo. Así después de realizada la medición fue encontrado un valor del pH de 7.23 lo que evidencia un sistema biocompatible para posibles aplicaciones biológicas. Descriptores: Descomposición térmica, co-precipitación, ferrofluido, nanopartículas, microscopia electrónica de transmisión. Abstract Currently the most studied type of magnetic nanoparticles are of cubic structure, inverse spinel, because these materials have very interesting features and possible applications since they facilitate building more complex systems. We must consider that due to the presence of transition metal on the surface of nanoparticles is that the conditions for funcionalizarlas with other molecules through complex functional groups obtaining materials with polar or apolar characteristics, depending on the type of implementation that want to use. Considering that when working with biological systems nanoparticles are detected by the reticuloendothelial system (RES). This functionalization is responsible for preventing agglomeration there of allowing them to remain in stable suspension (magnetic colloids) that can be driven by external magnetic fields. In this work, we show in detail the results obtained in improving the synthesis route system in the form of nanoparticles ferrofluid magnetite (Fe3O4) using the method of thermal decomposition and compare our results with respect to another synthesis route to nano particulate system method called chemical coprecipitation. To measure the size as well as knowing the morphological and structural properties of nanoparticles proceeded to the characterization of nanoparticles obtained by the methods of thermal decomposition and chemical co-precipitation through transmission electron microscopy (TEM). Size distribution averaging 8 nm and polydispersity of 0.14 was found. These results were corroborated by the results obtained by analyzing patterns of X-ray diffraction. The stability of the ferrofluid obtained was measured using the technique known as DLS (Dynamic Light Scattering), where it was found a value of 42.8 mV, which is within the expected value for a stable system, whereas for a nanoparticle system Zetasiser value above 30 mV represents a stability of the aqueous suspensión. At the end of characterization measures the extent of the value of the potential of hydrogen (pH) was performed using a pH meter, to study our sample having biocompatibility ferrofluid as our interest is that the ferrofluid could be used as vehicle for active ingredients or drugs addressing to a specific region in the body. And after completion of the measurement it was found a pH of 7.23 which shows a biocompatible system to possible biological applications. Keywords: Thermal decomposition, co-precipitation, ferrofluid, nanoparticles, transmission electron microscopy.


2011 ◽  
Vol 47 (2) ◽  
pp. 211-218 ◽  
Author(s):  
R. Ahmadi ◽  
Madaah Hosseini ◽  
A. Masoudi

In this work, magnetite nanoparticles (mean particle size about 20 nm) were synthesized via coprecipitation method. In order to investigate the kinetics of nanoparticle formation, variation in the amount of reactants within the process was measured using pH-meter and atomic absorption spectroscopy (AAS) instruments. Results show that nanoparticle formation behavior can be described by Avrami equations. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) were performed to study the chemical and morphological characterization of nanoparticles. Some simplifying assumptions were employed for estimating the nucleation and growth rate of magnetite nanoparticles.


Catalysts ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 969 ◽  
Author(s):  
Farheen Zafar ◽  
Hong-peng Wang ◽  
Chang-jiang Lv ◽  
Muhammad-Haseeb Ullah ◽  
Chun-yan Liu ◽  
...  

To improve the storage stability of glutamic acid decarboxylase (GAD), superparamagnetic magnetite (Fe3O4) nanoparticles were synthesized by co-precipitation method and coated with polydopamine (PDA) for GAD immobilization. Dynamic light scattering and transmission electron microscopy were used to determine size of the nanoparticles, which were approximately 10 nm, increasing to 15 nm after PDA-coating and to 20 nm upon GAD binding. Vibrational scanning measurements significantly represented the superparamagnetic behavior of the Fe3O4, and X-ray diffraction analysis confirmed that the crystalline structure before and after coating with PDA and the further immobilization of GAD remained the same. Thermogravimetric analysis and Fourier-transform infrared spectroscopy proved that the PDA-coating on Fe3O4 and further immobilization of GAD were successful. After immobilization, the enzyme can be used with a relative specific activity of 40.7% after five successive uses. The immobilized enzyme retained relative specific activity of about 50.5% after 15 days of storage at 4 °C, while free enzyme showed no relative specific activity after two days of storage. The GAD immobilization on PDA-coated magnetite nanoparticles was reported for the improvement of enzyme storage stability for the first time.


Antibiotics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 260 ◽  
Author(s):  
Syed Ghazanfar Ali ◽  
Mohammad Azam Ansari ◽  
Mohammad A. Alzohairy ◽  
Mohammad N. Alomary ◽  
Mohammad Jalal ◽  
...  

Synthesis of nanoparticles using the plants has several advantages over other methods due to the environmentally friendly nature of plants. Besides being environmentally friendly, the synthesis of nanoparticles using plants or parts of the plants is also cost effective. The present study focuses on the biosynthesis of zinc oxide nanoparticles (ZnO NPs) using the seed extract of Butea monsoperma and their effect on to the quorum-mediated virulence factors of multidrug-resistant clinical isolates of Pseudomonas aeruginosa at sub minimum inhibitory concentration (MIC). The synthesized ZnO NPs were characterized by different techniques, such as Fourier transform infra-red spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and transmission electron microscopy (TEM). The average size of the nanoparticles was 25 nm as analyzed by TEM. ZnO NPs at sub MIC decreased the production of virulence factors such as pyocyanin, protease and hemolysin for P. aeruginosa (p ≤ 0.05). The interaction of NPs with the P. aeruginosa cells on increasing concentration of NPs at sub MIC levels showed greater accumulation of nanoparticles inside the cells as analyzed by TEM.


Sign in / Sign up

Export Citation Format

Share Document