scholarly journals Investigation into the Phytochemical profile, Antioxidant and Antibacterial potentials of Combretum Molle and Acacia Mearnsii leaf parts

2020 ◽  
Vol 13 (4) ◽  
pp. 1683-1694
Author(s):  
Nokhanyo M. Ntshanka ◽  
Ikechukwu P. Ejidike ◽  
Fanyana M. Mthunzi ◽  
Makwena J. Moloto ◽  
Kalenga P. Mubiayi

The use of herbal plants in recent years have increased tremendously owing to their user-friendliness, accessibility, and affordability. In this study, the plant species Combretum molle and Acacia mearnsii were phytochemical screened for the existence of active organic compounds, the content of total phenols, flavonoids and antioxidants using different solvents were investigated. The functional groups existing in the plants extracts were identified using FT-IR. The total phenol contents varied from 53.74 ± 5 – 97.29 ± 3 GAE mg/g and 53.74 ± 7 – 98.58 ± 2 GAE mg/g in the extraction powders for C. molle and A. mearnsii. In C. molle, the content of total flavonoids ranged from 76.90 ± 2 – 114.54 ± 0.18 QE mg/g, while 89.40 ± 3 – 105.45 ± 0.15 QE mg/g was found in A. mearnsii. The radical scavenging activities of the solvent extracts against DPPH and the controls revealed that acetone extract of C. molle displayed 99.64% DPPH inhibition, while A. mearnsii showed a maximum activity of 85.53% at 5 µg/ml. The antimicrobial activity of the two plant species was evaluated using diffusion disk and broth dilution methods. The activity by broth dilution of ethanol, methanol and acetone extracts of C. molle exhibited MIC values (39.06 and 78.13 mg/µL) against P. aeruginosa and E. coli strains respectively, while ethanol and chloroform extracts of A. mearnsii showed (39.06 and 78.13 mg/µL) against P. aeruginosa and E. faecalis respectively. Results from this study showed that the leave extracts constitute healthy supplements with antioxidant and antibacterial potentials that could be useful in traditional medicine for the treatment of numerous infectious ailments.

2020 ◽  
Vol 16 (5) ◽  
pp. 530-540 ◽  
Author(s):  
Devidas G. Anuse ◽  
Bapu R. Thorat ◽  
Sudhir Sawant ◽  
Ramesh S. Yamgar ◽  
Hemchandra K. Chaudhari ◽  
...  

Background: Benzothiazoles are reported to have bioorganic and pharmaceutical chemistry applications. Introduction: A series of substituted N-bromoamido-2-aminobenzothiazoles was synthesized from substituted anilines via 2-aminobenzothiazoles and it was further evaluated for its antimicrobial activity. Methods: All the newly synthesized compounds were characterized by FT-IR, NMR and mass spectra and purity profiles were studied by HPLC analysis. The antimicrobial testing (MIC determination) was newly performed with agar micro-broth dilution method for these analogs. Results: Among the synthesized compound 3b showed the highest activity with MIC value of 3.12 μg/mL against Bacillus, E. coli, S. aureus and Klebsiella and 6.25 μg/mL against C. albicans. The ADME properties as calculated by using Qikprop were found within acceptable range. Derivatives shows a good-moderate binding affinity towards target Cytochrome P450 14 alpha-sterol demethylase (CYP51) (PDB ID: 1EA1). Conclusion: Our in-silico and in-vitro studies on a series of substituted aminobenzothiazoles may be helpful for further designing of more potent antimicrobials in future.


Author(s):  
Tanu Srivastava ◽  
S. K. Mishra ◽  
O. P. Tiwari ◽  
Kavindra Nath Tiwari ◽  
Pradeep Kumar ◽  
...  

Green synthesis of two coordination complexes of zinc acetate with N^N moiety on quercetin, which is a flavonoid is carried out. The complexes were obtained in high yields (> 97%) by grinding methods without the involvement of any solvent. Neither catalyst nor any additives were needed to perform the reactions. It was characterized by FT-IR, UV-Vis, NMR, HRMS, and elemental analysis. Antioxidant activity was done through the DPPH method which was compared with ascorbic acid and ligand (Quercetin). The study reveals that Complex 1 (IC50 163.093µg/ml) has significant free radical scavenging activity as compared to complex 2 (IC50 258.683µg/ml). Biological activity was performed against microbes (E. coli and S. aureus). MIC value of complex 1 (15.50µg/ml E. coli, 7.18µg/ml S. aureus) was found more significant as compared to complex 2 (22.51µg/ml E. coli, 18.62µg/ml S. aureus) and quercetin.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
G. Kiran ◽  
T. Maneshwar ◽  
Y. Rajeshwar ◽  
M. Sarangapani

A series of β-Isatin aldehyde-N,N′-thiocarbohydrazone derivatives were synthesized and assayed for theirin vitroantimicrobial and antioxidant activity. The new compounds were characterized based on spectral (FT-IR, NMR, MS) analyses. All the test compounds possessed a broad spectrum of activity having MIC values rangeing from 12.5 to 400 μg/ml against the tested microorganisms. Among the compounds3e,3jand3nshow highest significant antimicrobial activity. The free radical scavenging effects of the test compounds against stable free radical DPPH (α,α-diphenyl-β-picryl hydrazyl) and H2O2were measured spectrophotometrically. Compounds3j,3n,3l, and3e, respectively, had the most effective antioxidant activity against DPPH and H2O2scavenging activity.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 124
Author(s):  
Haidy A. Gad ◽  
Nilufar Z. Mamadalieva ◽  
Stefan Böhmdorfer ◽  
Thomas Rosenau ◽  
Gokhan Zengin ◽  
...  

The compositions of volatile components in the aerial parts of six Astragalus species, namely A. campylotrichus (Aca), A. chiwensis (Ach), A. lehmannianus (Ale), A. macronyx (Ama), A. mucidus (Amu) and A. sieversianus (Asi), were investigated using gas chromatograph-mass spectrometry (GC-MS) analysis. Ninety-seven metabolites were identified, accounting for 73.28, 87.03, 74.38, 87.93, 85.83, and 91.39% of Aca, Ach, Ale, Ama, Amu and Asi whole oils, respectively. Sylvestrene was the most predominant component in Asi, Amu and Ama, with highest concentration in Asi (64.64%). In addition, (E)-2-hexenal was present in a high percentage in both Ale and Ach (9.97 and 10.1%, respectively). GC-MS based metabolites were subjected to principal component analysis (PCA) and hierarchal cluster analysis (HCA) to explore the correlations between the six species. The PCA score plot displayed clear differentiation of all Astragalus species and a high correlation between the Amu and Ama species. The antioxidant activity was evaluated in vitro using various assays, phosphomolybdenum (PM), 2,2 diphenyl-1-picryl-hydrazyl-hydrate (DPPH), 2,2-azino bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), cupric reducing antioxidant capacity (CUPRAC), ferric reducing power (FRAP) and ferrous ion chelation (FIC) assays. In addition, the potential for the volatile samples to inhibit both acetyl/butyrylcholinesterases (AChE, BChE), α- amylase, α-glucosidase and tyrosinase was assessed. Most of the species showed considerable antioxidant potential in the performed assays. In the DPPH assay, Ama exhibited the maximum activity (24.12 ± 2.24 mg TE/g sample), and the volatiles from Amu exhibited the highest activity (91.54 mgTE/g oil) in the ABTS radical scavenging assay. The effect was more evident in both CUPRAC and FRAP assays, where both Ale and Ama showed the strongest activity in comparison with the other tested species (84.06, 80.28 mgTE/g oil for CUPRAC and 49.47, 49.02 mgTE/g oil for FRAP, respectively). Asi demonstrated the strongest AChE (4.55 mg GALAE/g oil) and BChE (3.61 mg GALAE/g oil) inhibitory effect. Furthermore, the best tyrosinase inhibitory potential was observed for Ale (138.42 mg KAE/g). Accordingly, Astragalus species can be utilized as promising natural sources for many medicinally important components that could be tested as drug candidates for treating illnesses such as Alzheimer’s disease, diabetes mellitus and oxidative stress-related diseases.


2020 ◽  
Vol 32 (3) ◽  
pp. 580-586
Author(s):  
Ranjit V. Gadhave ◽  
Bhanudas S. Kuchekar

A new series of N-(benzo[d]thiazol-2-yl)-[1,2,4]triazolo[4,3-c]quinazoline-5-carboxamide derivatives were synthesized by condensation of [1,2,4]triazolo[4,3-c]quinazoline-5-carboxylate derivatives with substituted benzothiazoles. The chemical structures of the synthesized compounds were confirmed by FT-IR, MS and 1H NMR spectra. Designed triazoloquinazoline derivatives were docked with oxido-reductase enzyme (PDB Code 4h1j) and DNA gyrase enzyme (PDB Code 3g75). Based on high binding affinity score, the best compound were selected for synthesis and subjected to in vitro antioxidant and antibacterial activity. Compounds 7a and 7d were found to be most active compounds as antioxidant agent among this series when compared with ascorbic acid. Compounds 7a, 7d and 7f were found to be most active compounds as an antibacterial agents among this series when compared with ciprofloxacin against bacterial strains such as S. aureus (ATCC 25923), E. coli (ATCC 25922) and P. aeruginosa (ATCC 27853). Study revealed that the most active compounds after structural modifications can be exploited as lead molecules for other pharmacological activities such as anti-inflammatory, anticancer and antidepressant activities.


2020 ◽  
Vol 5 (1) ◽  
pp. 761-767
Author(s):  
Reiyhaneh Abbasian ◽  
Hoda Jafarizadeh-Malmiri

AbstractGreen fabrication of metal nanoparticles (NPs), using natural reducing and stabilizing agents existed in plants and their derivatives, due to their unique properties, has gained more attention. The present study focuses on the synthesis of gold (Au), silver (Ag) and selenium (Se) NPs using coffee bean extract under hydrothermal conditions (1.5 atm and 121°C, for 15 min). Coffee bean extract obtained in 2 h processing using Clevenger apparatus and Fourier transform-infrared (FT-IR) spectroscopy indicated five highlighted peaks, namely, hydroxyl, amide, aromatic, alkane and ring groups. Dynamic light scattering analysis revealed that among three different NPs formed, fabricated Ag NPs had small particle size (153 nm) and high zeta potential value (16.8 mV). However, synthesized Au NPs had minimum polydispersity index (0.312). Results also indicated that fabricated Au, Se and Ag NPs had low antioxidant activity with values of 9.1, 8.9 and 8.7%, respectively. Morphological and antibacterial activity assessments, demonstrated that synthesized Ag, Au and Se NPs had spherical shape and high bactericidal activity against E. coli and S. aurous. Obtained results indicated that the synthesized NPs, can be utilized in various areas.


2012 ◽  
Vol 9 (4) ◽  
pp. 1897-1905 ◽  
Author(s):  
A. Solankee ◽  
K. Patel ◽  
R. Patel

Chalcones(6a-f)have been prepared by the condensation of ketone(5)and different aromatic and heterocyclic aldehydes. These chalcones(6a-f)on treatment with guanidine hydrochloride and phenyl hydrazine hydrochloride in presence of alkali give aminopyrimidines(7a-f)and phenylpyrazolines(8a-f)respectively. All the newly synthesized compounds have been characterized on the basis of IR,1HNMR spectral data as well as physical data. Antibacterial activity (minimum inhibitory concentration MIC) against Gram-positiveS. aureusMTCC 96 andS. pyogeneusMTCC 442 and Gram-negativeP. aeruginosaMTCC 1688 andE. coliMTCC 443 bacteria, as well as antifungal acivities (MIC) againstC. albicansMTCC 227,A. nigerMTCC 282 andA. clavatusMTCC 1323 were determined by broth dilution method.


2021 ◽  
Author(s):  
Amalanathan.M ◽  
Aravind.M ◽  
Sony Michael Mary.M ◽  
Razan A. Alshgari ◽  
Asma A. Alothman ◽  
...  

Abstract In this work, jasmine flower derived activated carbon were successfully synthesized by hydrothermal carbonization process at the different annealing temperature. The Crystallinity, phase, structural, morphological and optical properties of activated carbon were investigated using X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FT-IR), Scanning electron microscopy (SEM), Transmission electron microscope (TEM), and UV-visible spectroscopy analysis. The graphitic phase of carbon was obtained from the XRD pattern. Surface morphology reveals irregular-shaped nanoparticles. The photodegradation of methylene blue (MB) was carried out under the visible light irradiation technique to study its photocatalytic activity. The activated carbon obtained at 400oC, 500oC and 600oC shows a photocatalytic degradation efficiency of 86%, 90%, and 94%, respectively. Antibacterial activity of activated carbon was examined against S. Aureus (MTCC-737) and E-Coli (MTCC- 443) microbial pathogens, and their potent antibacterial activity was examined from the zone of inhibition layer.


Author(s):  
Lokesh Ravi ◽  
Manasvi V ◽  
Praveena Lakshmi B

ABSTRACTObjective: Aim of this study is to analyze the antibacterial and antioxidant potential of crude saponin extract (CSE) from Abutilon indicum leaves.Methods: CSE was subjected for gas chromatography-mass spectrometry (GC-MS) analysis to identify its components. Antibacterial potentialwas analyzed using agar well diffusion method and minimum inhibitory concentration (MIC) was detected using 96-well plate method, againstStaphylococcus aureus (MTCC: 3160) and Escherichia coli (MTCC: 443). DNA damage study was performed using comet assay. Antioxidant capabilitywas studied using 2,2-diphenyl-1-picrylhydrazyl scavenging assay.Results: GC-MS analysis suggested a library match to benzene-1-4-bis(phenylmethyl), with a molecular weight of 258 g/mol to be the majorcomponent in the CSE at 21.25 RT. CSE demonstrated 96.16% free radical scavenging activity at 2.5 mg/ml concentration. CSE demonstrateda significant antibacterial activity in the well diffusion assay, S. aureus 17 mm and E. coli 15 mm, with a MIC value of 1.11 mg/ml. Comet assaydemonstrated no DNA damage.Conclusion: These results conclude that CSE of A. indicum leaves possesses promising antibacterial and antioxidant potential.Keywords: Abutilon indicum, Saponin, Escherichia coli, Staphylococcus aureus, 2,2-diphenyl-1-picrylhydrazyl, Antibacterial assay.


Author(s):  
Aseel Alsarahni ◽  
Zuhair Muhi Eldeen ◽  
Elham Al-kaissi ◽  
Hiba Al-malliti

Objective: To determine the time needed for killing different types of microorganisms by a newly synthesized 2-mercapto-1,3-benzothiazole derivative in comparison to ciprofloxacin and fluconazole.Methods: The minimum bactericidal concentration (MBC) and minimum fungicidal concentration (MFC) for 2-{[4-(2,6-dimethylPiperidin-1-yl)but-2-yn-1-yl]Sulfanyl}-1,3-benzothiazole(AZ3) compound were determined, using the broth dilution method. The MBC and MFC dilutions were prepared. Broth cultures of Staphylococcus aureus (S. aureus), Bacillus subtilis (B. subtilis), Escherichia coli (E. coli), and Pseudomonas aeruginosa (P. aeruginosa) were incubated at 37 °C for 24 h, and Candida albicans (C. albicans) was incubated at 25 °C for 48 h. 0.1 ml of each broth culture represent 1.5 x 106 CFU/ml was challenged with 9.9 ml broth containing the MBC or MFC concentrations of the AZ3 compound. From each sample at different time intervals, 1 ml was taken and added to 9 ml of sterile distilled water, in order to neutralize the effect of AZ3. Serial dilution was done and a viable count was determined from the appropriate dilutions.Results: The viability of the P. aeruginosa, E. coli, S. aureus, B. subtilis and C. albicans were killed within 3.5 h, 5 h, 24 h, 3 h and 5 h respectively. The time killing curves showed that AZ3 needed longer time for killing S. aureus than the time needed to kill B. subtilis. On the other hand, AZ3 needed a shorter time to kill P. aeruginosa, than the time needed to kill E. coli. In comparison with ciprofloxacin, AZ3 needed a shorter time to kill P. aeruginosa and E. coli, and the same time to kill B. subtilis, while it needed longer time than ciprofloxacin to kill S. aureus. In comparison with fluconazole, AZ3 with lower MFC than fluconazole needed longer time to kill C. albicans.Conclusion: AZ3 showed promising antimicrobial killing activities, in compared with ciprofloxacin and fluconazole, which promoted our interest to investigate the time of killing needed for other 2-mercaptobenzothiazole derivatives against different types of microorganisms.


Sign in / Sign up

Export Citation Format

Share Document