scholarly journals Studying the Mineral Additives Effect on a Composition and Properties of a Composite Binding Agent

2018 ◽  
Vol 34 (4) ◽  
pp. 1945-1955 ◽  
Author(s):  
Aimenov Askar Zhambulovich ◽  
Khudyakova Tatyana Mikhailovna ◽  
Sarsenbayev Bakytzhan Kudaibergenovich ◽  
Dzhakipbekova Nagima Ormanovna ◽  
Ali Khalid Abdul Khalim Kheidar ◽  
...  

A Portland cement is a basic initial component for concrete and reinforced concrete manufacture, which defines their technical-economic and operational properties. One of a perspective ways of increase in the efficiency of cement production without essential change of its technology is inclusion of various mineral additives influencing on a structure and properties of a cement stone. As power inputs make the most part of the costs necessary for cement manufacture, the cement industry is interested in decrease in fuel and electric power expenditures per 1 tonne of cement. To reach the decrease in power inputs and at the same time to raise the environmental safety of cement production the cement industry is recently focused on increase in output of composite cements. Composite cements not only promote optimization of the production in terms of ecology, but also can provide such technical advantages as lower hydration heat, higher chemical resistance and placeability.

Author(s):  
В.А. Байтиев ◽  
Р.Г. Бисултанов ◽  
М.Ш. Саламанова ◽  
С-А. Ю. Муртазаев

В данной статье раскрываются особенности формирования структуры цементных композиций с применением активной минеральной добавки вулканического происхождения. Полученные ре цептуры композиционных цементов позволят получать высококачественные бетоны с классом прочности от В60 до В100, снижать нормальную густоту бетонных смесей на 2530, при этом подвижность смеси остается постоянной. Кроме того, применение данной разработки позволит повышать темпы набора прочностных показателей бетона, что дает вероятность отказа от тепло вой обработки и способствует получению необходимой для распалубки прочности за промежуток времени 1824 часов. Работа выполнена в рамках исследований по реализации научного проекта 1848-200001 Высококачественные бетоны с повышенными эксплуатационными свойствами на основе местного природного и техногенного сырья , получившего поддержку Российского фонда фундаментальных исследований (РФФИ). The article reveals the features of the formation of the structure of cement compositions using active mineral additives of volcanic origin. The resulting composition of composite cements will make it possible to obtain high-quality concrete with a strength class from B60 to B100, reduce the normal density of concrete mixtures by 2530, while the mobility of the mixture remains constant. In addition, the use of this development will allow increasing the pace of a set of strength indicators of concrete, which gives the probability of refusal from heat treatment and helps to obtain the strength necessary for stripping for a period of 1824 hours.


2021 ◽  
Vol 25 (1) ◽  
pp. 803-815
Author(s):  
Olga Miryuk

Abstract The article outlines the main problems that the cement industry causes to the environment. Authors propose technological solutions aimed at resource-saving in cement production and environmental protection. The research is devoted to low-energy cement obtained on the basis of waste from processing skarn-magnetite ores. The characteristics of the composition and properties of the technogenic material are given. The authors have justified the feasibility of using skarn-magnetite ore enrichment waste as a part of a cement raw material mixture. The possibility of changing the composition of cement by reducing the energy-intensive alite phase is demonstrated. Technological and heat engineering calculations confirming the reduction of natural mineral raw materials and fuel costs in the production of cement were carried out. The processes of hydration of the developed cements have been investigated. A method for accelerating the hardening of low-base cements due to mechanical activation, the introduction of mineral additives and a modifier is proposed. The research revealed construction and technological advantages of the developed cements, which exhibit increased resistance during operation in an aggressive environment. Physical and mechanical tests of concretes made of low-base cement were carried out. The possibility of reducing the temperature during the heat treatment of concrete is proved. Physical and mechanical tests of concretes made of low-base cement were carried out. The paper presents environmental benefits of the developed cement technology.


2021 ◽  
Vol 2021 (1) ◽  
pp. 35-41
Author(s):  
Тetiana Kropyvnytska ◽  
◽  
Iryna Нeviuk ◽  
Roksolana Stekhna ◽  
Oksana Rykhlitska ◽  
...  

The article shows the relation between sustainability and cement manufacture that can be obtained by the replacement of clinker with limestone additive. This decreases the use of energy resources and reduces CO2 emissions in cement production. The issue of partial Portland cement clinker substitution by finely ground limestone in the production of market-oriented types of cement type CEM II is solved on the cement plant PJSC "Ivano-Frankivsk Cement". The indexes of physical-mechanical tests of certified Portland limestone cement with high early strength CEM II/A-LL 42.5 R produced by PJSC "Ivano-Frankivsk Cement" are given. Finely dispersed limestone in Portland-composite cements with slag promotes a more complete synergic effect. It is established, that rapid-hardening blended Portland cements with limestone powder provide technological, technical, ecological, and economic effects in the production of prefabricated and monolithic reinforced concrete.


2018 ◽  
Vol 2 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Togar W. S. Panjaitan ◽  
Paul Dargusch ◽  
Ammar A. Aziz ◽  
David Wadley

Around 600 Mt carbon dioxide equivalents (CO2e) of anthropogenic greenhouse gases (GHG) emission originates from energy production and consumption in Indonesia annually. Of this output, 40 Mt CO2e comes from cement production. This makes the cement industry a key sector to target in Indonesia’s quest to reduce its emissions by 26% by 2020. Substantial opportunities exist for the industry to reduce emissions, mainly through clinker substitution, alternative fuels, and the modernization of kiln technologies. However, most of these abatement options are capital intensive and considered as noncore business. Due to this, the private sector is unlikely to voluntarily invest in emission reduction unless it saves money, improves revenue, enhances the strategic position of the firm, or unless governments provide incentives or force adoption through regulatory and policy controls. In this study, we review the profile of the Indonesian cement industry and assess the carbon management and climate policy actions available to reduce emissions. The case highlights opportunities for improved carbon management in emission-intensive industries in developing countries.


2021 ◽  
Vol 13 (23) ◽  
pp. 13120
Author(s):  
Fatemeh Soltanzadeh ◽  
Ali E. Behbahani ◽  
Eduardo N. B. Pereira ◽  
Carlos A. Teixeira

The adverse consequences of producing ordinary Portland cement (OPC) on the environment have introduced cement production as the fourth largest source of anthropogenic carbon emissions after petroleum, coal, and natural gas. Managing and reducing the environmental concerns regarding the impacts of cement production on the environment, namely the depletion of non-renewable fuel resources, consumption of natural raw materials, and releasing huge amounts of CO2 into the atmosphere should be, therefore, one of the key priorities of the cement industry. Application of locally available minerals and wastes that can be blended with OPC as a substitute could considerably reduce the environmental impact. The present study evaluates the potentiality of waste seashell to be used as an additive in the production of blended cement through a modified life cycle approach integrating environmental and mechanical performances. In this regard, 34 cements consisting of different blends of OPC, seashell powder (within the range of 4–30% by OPC mass), and natural pozzolan (up to 30% by OPC mass) were tested to identify the optimal dosage of OPC substitution. Environmental impacts of the cements were assessed through life-cycle analysis. The possibility of mitigating the carbon dioxide emissions in the production of cements, with similar mechanical performance compared to that of OPC, was evaluated by considering both the mechanical and environmental results. The outcome of this study introduced more environment-friendly and sustainable options for future cements.


2020 ◽  
Author(s):  
Jun Liu ◽  
Dan Tong ◽  
Yixuan Zheng ◽  
Jing Cheng ◽  
Xinying Qin ◽  
...  

Abstract. China is the largest cement producer and consumer in the world. Cement manufacturing is highly energy-intensive, and is one of the major contributors to carbon dioxide (CO2) and air pollutant emissions, which threatens climate mitigation and air quality improvement. In this study, we investigated the decadal changes of carbon dioxide and air pollutant emissions for the period of 1990–2015, based on intensive unit-based information on activity rates, production capacity, operation status, and control technologies, which improved the accuracy of the cement emissions in China. We found that, from 1990 to 2015, accompanied by a 10.9-fold increase in cement production, CO2, SO2, and NOx emissions from China's cement industry increased by 626 %, 59 %, and 658 %, whereas CO, PM2.5 and PM10 emissions decreased by 9 %, 66 %, and 63 %, respectively. In the 1990s, driven by the rapid growth of cement production, CO2 and air pollutant emissions increased constantly. Then, the production technology innovation of replacing traditional shaft kilns with the new precalciner kilns in the 2000s markedly reduced SO2, CO and PM emissions from the cement industry. Since 2010, the growing trend of emissions has been further curbed by a combination of measures, including promoting large-scale precalciner production lines and phasing out small ones, upgrading emission standards, installing low-NOx burners (LNB) and selective noncatalytic reduction (SNCR) to reduce NOx emissions, as well as adopting more advanced particulate matter control technologies. Our study highlighted the effectiveness of advanced technologies on air pollutant emission control, however, CO2 emissions from China's cement industry kept growing throughout the period, posing challenges to future carbon emission mitigation in China.


2021 ◽  
Vol 11 (3) ◽  
pp. 7069-7074
Author(s):  
M. Masmali

The lean manufacturing concept is a systematic minimization of waste and non-value activities in production processes introduced by the Toyota production system. In this research, lean manufacturing is implemented in a cement production line. Value Stream Mapping (VSM) is applied to give a clear picture of the value chain in cement production processes and to highlight the non-value-added in the shop floor. To begin, the existing VSM is constructed based on the information and data gathered during visiting and observing the manufacturing process in the firm. As a result, the excess inventory between workstations was identified as a major waste generation, hence, the proposed VSM conducts further improvement and makes action plans to alleviate the unwanted activities. Then, the takt time to ensure smooth material flow and to avoid any occurring delay or bottleneck in the production line was figured out. The supermarket pull-based production control is suggested to be adopted in the future map. Two pull production strategies are selected in this case. The first is applying the Kanban system to control the level of inventory between workstations. The other is the CONWIP approach to control the amount of work in process to the entire production line. The outcome of the proposed models indicates a decrease of the none-value time from 23 days in the current state to about 4 and 2 days in Kanban and CONWIP systems respectively, so the CONWIP was suggested as most efficient. Some suggestions for further research are also mentioned.


2019 ◽  
Vol 11 (9) ◽  
pp. 2626 ◽  
Author(s):  
Jing An ◽  
Richard S. Middleton ◽  
Yingnan Li

Cement manufacturing is one of the most energy and CO2 intensive industries. With the growth of cement production, CO2 emissions are increasing rapidly too. Carbon capture and storage is the most feasible new technology option to reduce CO2 emissions in the cement industry. More research on environmental impacts is required to provide the theoretical basis for the implementation of carbon capture and storage in cement production. In this paper, GaBi software and scenario analysis were employed to quantitatively analyze and compare the environmental impacts of cement production with and without carbon capture and storage technology, from the perspective of a life-cycle assessment; aiming to promote sustainable development of the cement industry. Results of two carbon capture and storage scenarios show decreases in the impacts of global warming potential and some environmental impacts. However, other scenarios show a significant increase in other environmental impacts. In particular, post-combustion carbon capture technology can bring a more pronounced increase in toxicity potential. Therefore, effective measures must be taken into account to reduce the impact of toxicity when carbon capture and storage is employed in cement production. CO2 transport and storage account for only a small proportion of environmental impacts. For post-combustion carbon capture, most of the environmental impacts come from the unit of combined heat and power and carbon capture, with the background production of MonoEthanolAmine contributing significantly. In combined heat and power plants, natural gas is more advantageous than a 10% coal-saving, and thermal efficiency is a key parameter affecting the environmental impacts. Future research should focus on exploring cleaner and effective absorbents or seeking the alternative fuel in combined heat and power plants for post-combustion carbon capture. If the power industry is the first to deploy carbon capture and storage, oxy-combustion carbon capture is an excellent choice for the cement industry.


2018 ◽  
Vol 7 (3.5) ◽  
pp. 24 ◽  
Author(s):  
A.M Shmyrin ◽  
N.M Mishachev ◽  
V.V Semina

Considering cement production, we deal with dust, associated with a non-optimal operation of the dust-free ventilation system in the clinker burning department. The optimally organized heating, ventilating, and air conditioning system in any type of production ensures the microclimate of the production premises, corresponding to the sanitary norms and rules, which contribute to the increase of the staff’s efficiency. In this paper, the questions of the neighborhood modeling of the heating, ventilating, and air conditioning system in the premises of the cement production shop are considered. A system for minimizing energy costs and reducing dust emission in the clinker burning shop is proposed, which allows increasing the environmental safety of production. 


Sign in / Sign up

Export Citation Format

Share Document