scholarly journals A Method for Reflectance Index Wavelength Selection from Moisture-Controlled Soil and Crop Residue Samples

2017 ◽  
Vol 60 (5) ◽  
pp. 1479-1487 ◽  
Author(s):  
Ali Hamidisepehr ◽  
Michael P. Sama ◽  
Aaron P. Turner ◽  
Ole O. Wendroth

Abstract. Reflectance indices are a method for reducing the dimensionality of spectral measurements used to quantify material properties. Choosing the optimal wavelengths for developing an index based on a given material and property of interest is made difficult by the large number of wavelengths typically available to choose from and the lack of homogeneity when remotely sensing agricultural materials. This study aimed to determine the feasibility of using a low-cost method for sensing the moisture content of background materials in traditional crop remote sensing. Moisture-controlled soil and wheat stalk residue samples were measured at varying heights using a reflectance probe connected to visible and near-infrared spectrometers. A program was written that used reflectance data to determine the optimal pair of narrowband wavelengths to calculate a normalized difference water index (NDWI). Wavelengths were selected to maximize the slope of the linear index function (i.e., sensitivity to moisture) and either maximize the coefficient of determination (R2) or minimize the root mean squared error (RMSE) of the index. Results showed that wavelengths centered near 1300 nm and 1500 nm, within the range of 400 to 1700 nm, produced the best index for individual samples. Probe height above samples and moisture content were examined for statistical significance using the selected wavelengths. The effect of moisture was significant for both bare soil and wheat stalks, but probe height was only significant for wheat stalk samples. The index, when applied to all samples, performed well for soil samples but poorly for wheat stalk samples. Index calculations from soil reflectance measurements were highly linear (R2 > 0.95) and exhibited small variability between samples at a given moisture content, regardless of probe height. Index calculations from wheat stalk reflectance measurements were highly variable, which limited the usefulness of the index for this material. Based on these results, it is expected that crop residues, such as wheat stalks, will reduce the accuracy of remotely sensed soil surface moisture measurements. Keywords: Near-infrared reflectance, Normalized difference water index, Remote sensing, Soil moisture, Spectroscopy.

2016 ◽  
Vol 24 (6) ◽  
pp. 571-585 ◽  
Author(s):  
Ataollah Haddadi ◽  
Guillaume Hans ◽  
Brigitte Leblon ◽  
Zarin Pirouz ◽  
Satoru Tsuchikawa ◽  
...  

We used the Kubelka-Munk theory equations for calculating the absorption coefficient (Kλ), the scattering coefficient ( Sλ), the transport absorption (σλa), the reduced scattering coefficient [σλs(1 – g)] and the penetration depth (δλ) from visible-near infrared reflectance spectra acquired over thin samples of quaking aspen and black spruce conditioned at three different moisture levels. The computed absorption and scattering coefficients varied from 0.1 mm−1 to 4.0 mm−1 and from 5.5 mm−1 to 10.0 mm−1, respectively. The absorption coefficients varied according to the absorption band, but the scattering coefficients decreased slowly towards high wavelengths. The sample moisture content was then estimated using the partial least squares (PLS) regression method from the Kλ and/or Sλ spectra, and the resulting PLS models were compared to those obtained with raw and transformed [multiplicative scatter corrected (MSC), first and second derivative] absorption spectra. The best PLS models for black spruce, quaking aspen and both species were obtained when only the 800–1800 nm range was used with the raw or MSC spectra. They led to a root mean square error of cross validation ( RMSECV) of 1.40%, 1.09% and 1.23%, respectively, and to a coefficient of determination ( R2CV) higher than 0.94. We also found that the Kλ spectra between 800 nm and 1800 nm can provide PLS models having an acceptable accuracy for moisture content estimation ( R2CV = 0.83 and RMSECV = 2.32%), regardless of the species.


Author(s):  
S.G. Efimenko ◽  
◽  
S.K. Efimenko ◽  

We used near-infrared reflectance spectroscopy (NIRS) to assess biochemical parameters in whole oil flax seeds, regardless of differences in seed coat color of the samples. At the first stage of work, the set the task to develop calibration models for the MATRIX-I IR analyzer to determine the oil and moisture content in flax seeds. The carried out the research in the laboratory of biochemistry on brown and yellow seed samples of oil flax, grown in 2015-2020 in various agro-ecological conditions of the Russian Federation. We determined the oil content on an AMV 1006M NMR analyzer in accordance with the GOST 8.597- 2010 measurement procedure; we assessed the moisture content by the standard method of GOST 10856- 96. We used the results of determination of the oil and moisture content of the seeds of test lot in accordance with the accuracy indicator of the calibration of GOST 32749-2014 to verify the reliability of the developed models. We received the best indicators of the quality of calibration models (root-mean-square prediction error, coefficient of determination and the value of the residual deviation of prediction for the rank displayed on the graph) by determining the oil content (RMSEP = 0.27 %, R2 = 99.2 and RPD = 11.2) and moisture content (RMSEP = 0.06 %, R2 = 99.9 and RPD = 39). In the OPUS LAB program we developed the “Flax 51” method for mass analysis based on the developed calibration models for the determination of oil and moisture content in whole oil flax seeds (9-20 g) in a sample cell with a diameter of 51 mm. It enables the quick carrying out a preliminary assessment of the breeding material at a high speed – more than 120 samples in 7 hours without seed destruction.


Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1077 ◽  
Author(s):  
Haoyang Fu ◽  
Tingting Zhou ◽  
Chenglin Sun

For multi-spectral remote sensing imagery, accurate shadow extraction is of great significance for overcoming the information loss caused by high buildings and the solar incidence angle in urban remote sensing. However, diverse solar illumination conditions, similarities between shadows, and other dark land features bring uncertainties and deviations to shadow extraction processes and results. In this paper, we classify shadows as either strong or weak based on the ratio between ambient light intensity and direct light intensity, and use the fractal net evolution approach (FNEA), which is a multi-scale segmentation method based on spectral and shape heterogeneity, to reduce the interference of salt and pepper noise and relieve the error of misdiagnosing land covers with high reflectivity in shaded regions as unshaded ones. Subsequently, an object-based shadow index (OSI) is presented according to the illumination intensities of different reflectance features, as well as using the normalized difference water index (NDWI) and near infrared (NIR) band to highlight shadows and eliminate water body interference. The data from three high-spatial-resolution satellites—WorldView-2 (WV-2), WorldView-3 (WV-3), and GaoFen-2 (GF-2)—were used to test the methods and verify the robustness of the OSI. The results show that the OSI index performed well regarding both strong and weak shadows with the user accuracy and the producer accuracy both above 90%, while the four other existing indexes that were tested were not effective at diverse solar illumination conditions. In addition, all the disturbances from water body were excluded well when using the OSI, except for the GF-2 data in weak shadows.


1998 ◽  
Vol 6 (1) ◽  
pp. 229-234 ◽  
Author(s):  
William R. Windham ◽  
W.H. Morrison

Near infrared (NIR) spectroscopy in the prediction of individual and total fatty acids of bovine M. Longissimus dorsi neck muscles has been studied. Beef neck lean was collected from meat processing establishments using advanced meat recovery systems and hand-deboning. Samples ( n = 302) were analysed to determine fatty acid (FA) composition and scanned from 400 to 2498 nm. Total saturated and unsaturated FA values ranged from 43.2 to 62.0% and 38.3 to 56.2%, respectively. Results of partial least squares (PLS) modeling shown reasonably accurate models were attained for total saturate content [standard error of performance ( SEP = 1.10%); coefficient of determination on the validation set ( r2 = 0.77)], palmitic ( SEP = 0.94%; r2 = 0.69), unsaturate ( SEP = 1.13%; r2 = 0.77), and oleic ( SEP = 0.97; r2 = 0.78). Prediction of other individual saturated and unsaturated FAs was less accurate with an r2 range of 0.10 to 0.53. However, the sum of individual predicted saturated and unsaturated FA was acceptable compared with the reference method ( SEP = 1.10 and 1.12%, respectively). This study shows that NIR can be used to predict accurately total fatty acids in M. Longissimus dorsi muscle.


Author(s):  
M. Matsuoka ◽  
M. Takagi ◽  
S. Akatsuka ◽  
R. Honda ◽  
A. Nonomura ◽  
...  

Himawari-8/AHI is a new geostationary sensor that can observe the land surface with high temporal frequency. Bidirectional reflectance derived by the Advanced Himawari Imager (AHI) includes information regarding land surface properties such as albedo, vegetation condition, and forest structure. This information can be extracted by modeling bidirectional reflectance using a bidirectional reflectance distribution function (BRDF). In this study, a kernel-driven BRDF model was applied to the red and near infrared reflectance observed over 8 hours during daytime to express intraday changes in reflectance. We compared the goodness of fit for six combinations of model kernels. The Ross-Thin and Ross-Thick kernels were selected as the best volume kernels for the red and near infrared bands, respectively. For the geometric kernel, the Li-sparse-Reciprocal and Li-Dense kernels displayed similar goodness of fit. The coefficient of determination and regression residuals showed a strong dependency on the azimuth angle of land surface slopes and the time of day that observations were made. Atmospheric correction and model adjustment of the terrain were the main issues encountered. These results will help to improve the BRDF model and to extract surface properties from bidirectional reflectance.


2021 ◽  
Author(s):  
Massimo Micieli ◽  
Gianluca Botter ◽  
Giuseppe Mendicino ◽  
Alfonso Senatore

<p>UAVs (Unmanned Aerial Vehicles) are increasingly used for monitoring river networks with a broad range of purposes. In this contribution, we focus on the use of multispectral sensors, either in the thermal infrared band LWIR (Long-wavelength infrared, 8-15 µm) or in the infrared band NIR (Near-infrared, 0.75-1.4 µm) to map network dynamics in temporary streams. Specifically, we discuss the first results of a set of surveys carried out in 2020 within a small river catchment located in northern Calabria (southern Italy), as part of the research activities of the ERC-funded DyNET project. Preliminary, a rigorous methodology was identified to perform on-site surveys and to process and analyse the acquired images. Experimental results show that the combined use of LWIR and NIR sensors is a suitable solution for detecting water presence in channels characterized by different hydraulic and morphologic conditions. LWIR sensors alone allow one to discriminate water presence only when the thermal contrast with the surrounding environment is high. On the other hand, NIR sensors permit to detect the presence of water in most of the analyzed settings through the estimate of the Normalized Difference Water Index (NDWI). However, NIR sensors can be misled in case of shallow water depth, due to the NIR radiation emitted by the riverbed merging with that of the water. Overall, the study demonstrates that a combined LWIR/NIR approach allows addressing a broader range of conditions. Moreover, the information provided can be further enhanced by combining it with geomorphologic information and basic hydraulic concepts.</p>


2018 ◽  
Vol 23 ◽  
pp. 00030 ◽  
Author(s):  
Anshu Rastogi ◽  
Subhajit Bandopadhyay ◽  
Marcin Stróżecki ◽  
Radosław Juszczak

The behaviour of nature depends on the different components of climates. Among these, temperature and rainfall are two of the most important components which are known to change plant productivity. Peatlands are among the most valuable ecosystems on the Earth, which is due to its high biodiversity, huge soil carbon storage, and its sensitivity to different environmental factors. With the rapid growth in industrialization, the climate change is becoming a big concern. Therefore, this work is focused on the behaviour of Sphagnum peatland in Poland, subjected to environment manipulation. Here it has been shown how a simple reflectance based technique can be used to assess the impact of climate change on peatland. The experimental setup consists of four plots with two kind of manipulations (control, warming, reduced precipitation, and a combination of warming and reduced precipitation). Reflectance data were measured twice in August 2017 under a clear sky. Vegetation indices (VIs) such as Normalized Difference Vegetation Index (NDVI), Photochemical Reflectance Index (PRI), near-infrared reflectance of vegetation (NIRv), MERIS terrestrial chlorophyll index (MTCI), Green chlorophyll index (CIgreen), Simple Ration (SR), and Water Band Index (WBI) were calculated to trace the impact of environmental manipulation on the plant community. Leaf Area Index of vascular plants was also measured for the purpose to correlate it with different VIs. The observation predicts that the global warming of 1°C may cause a significant change in peatland behaviour which can be tracked and monitored by simple remote sensing indices.


2020 ◽  
Vol 71 (5) ◽  
pp. 593 ◽  
Author(s):  
A. Drozd ◽  
P. de Tezanos Pinto ◽  
V. Fernández ◽  
M. Bazzalo ◽  
F. Bordet ◽  
...  

We used hyperspectral remote sensing with the aim of establishing a monitoring program for cyanobacteria in a South American reservoir. We sampled at a wide temporal (2012–16; 10 seasons) and spatial (30km) gradient, and retrieved 111 field hyperspectral signatures, chlorophyll-a, cyanobacteria densities and total suspended solids. The hyperspectral signatures for cyanobacteria-dominated situations (n=75) were used to select the most suitable spectral bands in seven high- and medium-spatial resolution satellites (Sentinel 2, Landsat 5, 7 and 8, SPOT-4/5 and -6/7, WorldView 2), and for the development of chlorophyll and cyanobacteria cell abundance algorithms (λ550 – λ650+λ800) ÷ (λ550+λ650+λ800). The best-performing chlorophyll algorithm was Sentinel 2 ((λ560 – λ660+λ703) ÷ (λ560+λ660+λ703); R2=0.80), followed by WorldView 2 ((λ550 – λ660+λ720) ÷ (λ550+λ660+λ720); R2=0.78), Landsat and the SPOT series ((λ550 – λ650+λ800) ÷ (λ550+λ650+λ800); R2=0.67–0.74). When these models were run for cyanobacteria abundance, the coefficient of determination remained similar, but the root mean square error increased. This could affect the estimate of cyanobacteria cell abundance by ~20%, yet it still enable assessment of the alert level categories for risk assessment. The results of this study highlight the importance of the red and near-infrared region for identifying cyanobacteria in hypereutrophic waters, demonstrating coherence with field cyanobacteria abundance and enabling assessment of bloom distribution in this ecosystem.


Sign in / Sign up

Export Citation Format

Share Document