scholarly journals Identification and antialgal properties of 
o-coumaric acid isolated from Eupatorium fortune Turcz

2018 ◽  
Vol 9 (4) ◽  
pp. 228-234
Author(s):  
Thanh Nga Pham ◽  
Huu Dien Pham ◽  
Thi Phuong Quynh Le ◽  
Tien Dat Nguyen ◽  
Thi Thuy Duong ◽  
...  

In our pervious study, the ethanol extracts from Eupatorium fortunei Turcz at concentrations of 200 ÷ 500 mg L-1 significantly inhibited the growth of Microcystis aeruginosa, which is the most common species, responsible for toxic cyanobacteria blooming in fresh water. o-Coumaric acid (or 2-hydroxy-cinnamic acid) isolated from E. fortunei was tested its growth-inhibitory effect on M. aeruginosa and Chlorella vulgaris at the concentrations of 1.0, 10.0 and 100.0 mg L-1 in the 96- hour experiment by the optical density and the analytical method of chlorophyll a concentration. Results indicated that the compound strongly affected towards M. aeruginosa at the concentration of 100.0 mg L-1 with the inhibition efficiency (IE) values of 76.76 % and 84.66 %, respectively while those for C. vulgaris were lower just of 60.59%, and 74.53 %, respectively. The obtained data demonstrated that two methods were highly consistent and o-coumaric acid was more toxic to M. aeruginosa than C. vulgaris at all tested concentrations (p<0.05). The images of M. aeruginosa and C. vulgaris cells under the light microscope clearly showed the damage of these cells under the attck of o-coumaric acid. Although o-coumaric compound was widely demonstrated antibacterial properties in previous reports, to the best of our knowledge, our study was the first report about effect of o-coumaric acid on the growth of M. aeruginosa and C. vulgaris. Những nghiên cứu trước đây đã chỉ ra rằng cao chiết etanol từ cây Mần tưới Eupatorium fortune Turcz tại dải nồng độ 200 ÷ 500 µg mL-1 ức chế mạnh sinh trưởng của Microcystis aeruginosa, - loài phổ biến nhất gây nên sự bùng nổ tảo độc trong hệ sinh thái nước ngọt. o-Coumaric axit (hay 2-hydroxy-cinnamic axit) phân lập từ E. fortune được tiến hành đánh giá ảnh hưởng lên sinh trưởng của hai loài M. aeruginosa và Chlorella vulgaris tại ba nồng độ là 1.0, 10.0 and 100.0 mg L-1 trong thời gian 96 giờ thực nghiệm theo phương pháp đo mật độ quang và phân tích hàm lượng chlorophyll a. Kết quả nghiên cứu cho thấy sau 96 giờ phơi nhiễm tại nồng độ 100 mg L-1 hoạt chất ức chế mạnh tới M. aeruginosa với giá trị ức chế sinh trưởng (IE) tương ứng là 76.76 và 84.66%. Giá trị IE đối với C. vulgaris ghi nhận thấp hơn chỉ là 60.65 và 74.53%, tương ứng. Hai phương pháp phân tích trên có tính nhất quán cao và o-coumaric ức chế sinh trưởng lên loài M. aeruginosa mạnh hơn so với loài C. vulgaris tại tất cả các nồng độ nghiên cứu (p<0.05). Ảnh chụp các tế bào M. aeruginosa và C. vulgaris dưới kính hiển vi điện tử đã chứng minh những tổn thương của tế bào dưới tác động của o-coumaric axit. Mặc dù o-coumaric cho thấy đặc tính chống khuẩn cao trong các công bố trước đây, nhưng theo hiểu biết của chúng tôi đây là nghiên cứu đầu tiên công bố về ảnh hưởng của hoạt chất o-coumaric axit lên sinh trưởng của M. aeruginosa và C. vulgaris.

2018 ◽  
Vol 19 (1) ◽  
pp. 245-253 ◽  
Author(s):  
Zakaria Tazart ◽  
Mountasser Douma ◽  
Lamiaa Tebaa ◽  
Mohammed Loudiki

Abstract In recent years macrophytes have been considered promising tools in the biocontrol of harmful cyanobacteria blooms (cyanoHABs). In this study, the inhibitory effect of aqueous extracts of Ranunculus aquatilis and Nasturtium officinale on Microcystis aeruginosa growth was assessed via six treatments (0%, 0.1%, 0.25%, 0.50%, 0.75%, and 1% extracts). Chlorophyll a and carotenoid content were analyzed and changes in cell and colonial morphology of M. aeruginosa cultures were observed. Also, to reveal potential allelochemical compounds, total phenols (TPs), total flavonoids (TFs), and tannins (TTs) were analyzed in both extracts. The obtained results showed that M. aeruginosa growth was significantly inhibited by R. aquatilis and N. officinale aqueous extracts in a concentration-dependent way. After 8 days of treatment, the highest inhibition rates reached 100% and 75.74% respectively. The Chlorophyll a and carotenoid concentrations were decreased compared to the control group. Colonial and cell and colonial morphology changes were observed under the treatment group with 1% of aqueous extract accompanied by sedimentation of the cyanobacterial cells. This study shows that M. aeruginosa growth inhibition was induced by the total polyphenol, flavonoids and tannins. It was concluded that theses macrophytes may control M. aeruginosa and may be useful to control harmful blooms in lake-reservoirs.


Nanomaterials ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1669 ◽  
Author(s):  
Gongduan Fan ◽  
Minchen Bao ◽  
Bo Wang ◽  
Shimin Wu ◽  
Lingxi Luo ◽  
...  

In this study, a novel nanomaterial Cu2O/SiO2 was synthesized based on nano-SiO2, and the inhibitory effects of different concentrations of Cu2O/SiO2 on the growth of Microcystis aeruginosa (M. aeruginosa) were studied. At the same time, the mechanism of Cu2O/SiO2 inhibiting the growth of M. aeruginosa was discussed from the aspects of Cu2+ release, chlorophyll a destruction, oxidative damage, total protein, and the phycobiliprotein of algae cells. The results showed that low doses of Cu2O/SiO2 could promote the growth of M. aeruginosa. When the concentration of Cu2O/SiO2 reached 10 mg/L, it exhibited the best inhibitory effect on M. aeruginosa, and the relative inhibition rate reached 294% at 120 h. In terms of the algae inhibition mechanism, Cu2O/SiO2 will release Cu2+ in the solution and induce metal toxicity to algae cells. At the same time, M. aeruginosa might suffer oxidative damage by the free radicals, such as hydroxyl radicals released from Cu2O/SiO2, affecting the physiological characteristics of algae cells. Moreover, after the addition of Cu2O/SiO2, a decrease in the content of chlorophyll a, total soluble protein, and phycobiliprotein was found, which eventually led to the death of M. aeruginosa. Therefore, Cu2O/SiO2 can be used as an algaecide inhibitor for controlling harmful cyanobacteria blooms.


2007 ◽  
Vol 19 (3) ◽  
pp. 261-268
Author(s):  
GAO Yan ◽  
◽  
ZHOU Feng ◽  
ZHANG Shucai ◽  
ZHANG Wei ◽  
...  

2021 ◽  
Author(s):  
Zhiyun Jiang ◽  
lixiao Ni ◽  
Xianglan Li ◽  
Chu Xu ◽  
Xuqing Chen ◽  
...  

Abstract Environment-friendly algaecides based on allelopathy have been widely used to control harmful algal blooms. In this research, micro nano scale artemisinin sustained-release algal inhibitor was prepared, the optimal preparation conditions were explored and the inhibitory mechanism of artemisinin algaecides was perfected. The results showed that when the particle size of artemisinin sustained-release microspheres (ASMs) was 2/10000 of artemisinin sustained-release granules (ASGs), the inhibitory effect was more remarkable. The optimal concentration of ASMs was 0.2 g L-1, and the inhibitory effect reached 99% on the 10th day; The algae density and chlorophyll-a both showed a downward trend, indicating that ASGs and ASMs could promote the degradation of chlorophyll-a; The inhibition rate of ASGs was faster than that of ASMs on the 4th day, and the inhibitory effect of ASMs was more significant after the 5th day. The activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) increased rapidly at first and then decreased, which indicated that ASGs and ASMs caused oxidative damage to Microcystis aeruginosa (M. aeruginosa) and inhibited the activity of antioxidant enzymes. Furthermore, the content of the oxygen free radical (O2-) and malondialdehyde (MDA) continued to rise after the 5th day, the protein, nucleic acid and conductivity in the culture medium increased. These results showed that lipid peroxidation occurred in the algal cell membrane, and the permeability of the membrane increased. In summary, the ASMs had significant continuous inhibitory effect while the ASGs had better short-term effect. The main inhibitory mechanism of artemisinin algaecides is the irreversible damage of cell membrane.


Water ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 77
Author(s):  
Cristina Adochite ◽  
Luminita Andronic

In the last years, nanoparticles such as TiO2, ZnO, NiO, CuO and Fe2O3 were mainly used in wastewater applications. In addition to the positive aspects concerning using nanoparticles in the advanced oxidation process of wastewater containing pollutants, the impact of these nanoparticles on the environment must also be investigated. The toxicity of nanoparticles is generally investigated by the nanomaterials’ effect on green algae, especially on Chlorella vulgaris. In this review, several aspects are reviewed: the Chlorella vulgaris culture monitoring and growth parameters, the effect of different nanoparticles on Chlorella vulgaris, the toxicity of photocatalyst nanoparticles, and the mechanism of photocatalyst during oxidative stress on the photosynthetic mechanism of Chlorella vulgaris. The Bold basal medium (BBM) is generally recognized as an excellent standard cultivation medium for Chlorella vulgaris in the known environmental conditions such as temperature in the range 20–30 °C and light intensity of around 150 μE·m2·s−1 under a 16/8 h light/dark cycle. The nanoparticles synthesis methods influence the particle size, morphology, density, surface area to generate growth inhibition and further algal deaths at the nanoparticle-dependent concentration. Moreover, the results revealed that nanoparticles caused a more potent inhibitory effect on microalgal growth and severely disrupted algal cells’ membranes.


2021 ◽  
Vol 11 (10) ◽  
pp. 4675
Author(s):  
Youssef Elamine ◽  
Hamada Imtara ◽  
Maria Graça Miguel ◽  
Ofélia Anjos ◽  
Letícia M. Estevinho ◽  
...  

The emergence of multidrug-resistant bacteria has prompted the development of alternative therapies, including the use of natural products with antibacterial properties. The antibacterial properties of Zantaz honey produced in the Moroccan Atlas Mountains against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus was evaluated and analyzed using chemometric tools. Minimum inhibitory concentration (MIC) and Minimum bactericidal concentration (MBC) against S. aureus were the lowest (112.5 ± 54.5 mg/mL), revealing that this species was most sensitive to Zantaz honey. P. aeruginosa showed an intermediate sensitivity (MIC= 118.75 ± 51.9 mg/mL), while E. coli was the most resistant to treatment (MIC = 175 ± 61.2 mg/mL). Content of monosaccharides, certain minerals, and phenolic compounds correlated with antibacterial activity (p < 0.05). Principal component analysis of physicochemical characteristics and antibacterial activity indicated that the parameters most associated with antibacterial activity were color, acidity, and content of melanoidins, fructose, epicatechin, methyl syringate, 4-coumaric acid, and 3-coumaric acid.


Sign in / Sign up

Export Citation Format

Share Document