scholarly journals IFNγ modulates human immunoglobulin receptor expression in lipoaspirate-derived mesenchymal stem cells

2014 ◽  
Vol 23 (3) ◽  
pp. 127-32
Author(s):  
Dian R. Laksmitawati ◽  
Jeanne A. Pawitan ◽  
Mohamad Sadikin ◽  
Caroline T. Sardjono ◽  
Ahmad R. Utomo

Background: Mesenchymal stem cell (MSC) has been reported to have immunomodulator capacity against autoimmune diseases and to prevent allogenic tissue rejection. Many studies revealed that MSC’s inhibit T cell proliferation and induce immunosuppressive condition through the production of prostaglandins, and interleukin-10. In addition, MSC was reported to reduce circulating autoantibody in autoimmune patients following MSC transfusion. So far, there has been no report stating the presence of Fc receptors (receptors for immunoglobulin) on MSCs. The aim of this study was to reveal the expression of FcγRs in lipoaspirate-derived MSCs by measuring transcription of FcγR mRNA and whether the expression can be modulated.Methods: Lipoaspirate-derived MSCs were cultured in suitable medium and confirmed to be MSCs according to the criteria published by International Society for Cellular Therapy. Total mRNA of MSCs was isolated, and detection of human FcγRI, FcγRIIA and FcγRIIB mRNA was performed. Further, modulation of the expression was tested using heat aggregated gamma globulin (HAGG) and interferon (IFN)γ.Results: FcγRs mRNA was detected in the first passage of MSCs. However, the expression was no longer present after more than 4 passages. Further, increased level of FcγRI and FcγRIIA mRNA expression was detected with the addition of IFNγ in the culture. This preliminary finding opens a new insight for the understanding of interaction between MSCs and immunoglobulin G through FcγRs.Conclusion: Lipoaspirate-derived MSCs express FcγRs, and the expression is modulated by IFNγ.

Hypertension ◽  
2013 ◽  
Vol 62 (suppl_1) ◽  
Author(s):  
Isha S Dhande ◽  
Tahir Hussain

Macrophages have been shown to be an important contributor to the pathogenesis of hypertension and stroke. The angiotensin AT2 receptor (AT2R), which is expressed in macrophages, is known to promote vasodialation, natriuresis and lower inflammation. The goal of the present study was to explore the anti-inflammatory role of AT2R stimulation in human macrophage-like THP-1 cells activated by lipopolysaccharide (LPS). Phorbol 12-myristate 13-acetate (PMA) differentiated macrophage-like THP-1 cells were treated with AT2R agonist C21 (1 μmol/L) for 30 minutes prior to activation with LPS (1 μg/ml). Media and cells were collected after 24 hours and were analyzed for levels of pro- and anti-inflammatory cytokines and proteins. Pre-treatment with C21 resulted in a 4-fold increase (104.8±6.1 vs 406.7±52.3) in anti-inflammatory interleukin-10 (IL-10) production and a 5-fold decrease (3560±237 vs 588.8±15.94) in pro-inflammatory tumor necrosis factor-α (TNF-α) levels in the media in response to LPS. Predictably, LPS resulted in a 6-fold up-regulation of iNOS expression which was prevented with C21 pre-treatment. A modest decrease in the anti-inflammatory macrophage mannose receptor C type 2 (MRC2) expression was detected with LPS treatment. AT2R agonist pre-treatment, however, increased this receptor expression by ~70% after LPS activation. C21 alone also resulted in a 20% increase in MRC2 expression compared to untreated controls. The anti-inflammatory effect of AT2R activation was abolished in the presence of neutralizing IL-10 antibody (1 μg/ml), indicating a central role for IL-10 in mediating the beneficial response to C21 in LPS activated macrophages. Further, inhibition of nitric oxide (NO) by L-NAME prior to C21 pre-treatment also prevented the decrease in TNF-α and increase in IL-10 in response to AT2R agonist, which suggests that the anti-inflammatory response to C21 may be mediated via increase in NO production prior to LPS activation of macrophages. In conclusion, AT2R stimulation may potentially suppress the inflammatory response of macrophages to LPS by shifting the balance from pro- to anti-inflammatory cytokine production and may prove to be beneficial in the control of the inflammatory component of stroke and hypertension.


1985 ◽  
Vol 161 (6) ◽  
pp. 1513-1524 ◽  
Author(s):  
T Hara ◽  
S M Fu ◽  
J A Hansen

In previous studies (17-21), monoclonal antibody (mAb) 9.3 has been shown to react with a major population of human T cells, which include T4+ helper/inducer T cells and T8+ cytotoxic T cells. In this investigation, mAb 9.3 was shown to precipitate a disulfide-bonded dimer of a 44 kD polypeptide. Comodulation experiments showed that this molecule is not linked to T3/Ti or T11 antigens. mAb 9.3 was capable of inducing T cell proliferation in the presence of 12-o-tetradecanoyl phorbol-13-acetate (TPA). This effect was monocyte-independent. T cell activation with mAb 9.3 and TPA was associated with increases in interleukin 2(IL-2) receptor expression and IL-2 secretion. mAb 9.3 did not activate T cells, even with the addition of IL-1 or IL-2. Modulation of the T3 complex did not abolish mAb 9.3-induced T cell proliferation in the presence of TPA. These results suggest that the 9.3 antigen may serve as a receptor for an activation pathway restricted to a T cell subset.


Blood ◽  
1997 ◽  
Vol 90 (11) ◽  
pp. 4513-4521 ◽  
Author(s):  
Dieter Körholz ◽  
Ursula Banning ◽  
Halvard Bönig ◽  
Markus Grewe ◽  
Marion Schneider ◽  
...  

Abstract Interleukin-15 (IL-15) is a potent T-cell stimulating factor, which has recently been used for pre-clinical in vivo immunotherapy. Here, the IL-15 effect on CD3-stimulated peripheral human T cells was investigated. IL-15 induced a significant T-cell proliferation and upregulated CD25 expression. IL-15 significantly enhanced T-cell production of interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and IL-10. Between 10- and 100-fold greater concentrations of IL-15 were necessary to reach a biological effect equivalent to that of IL-2. Blockade of IL-2 binding to the high-affinity IL-2 receptor did not affect the IL-15 effects, suggesting that IL-15 did not act by inducing endogenous IL-2. Exogenously administered IL-10 significantly reduced the IL-15 and IL-2–mediated IFN-γ and TNF-α production, whereas T-cell proliferation and CD25 expression were not affected. The inhibitory effects of exogenously administered IL-10 on T-cell cytokine production appeared indirect, and are likely secondary to decreased IL-12 production by accessory cells. Inhibition of endogenous IL-10 binding to the IL-10 receptor significantly increased IFN-γ and TNF-α release from T cells. These data suggest that endogenous IL-10 can regulate activated T-cell production of IFN-γ and TNF-α via a paracrine negative feedback loop. The observations of this study could be of relevance for the therapeutic use of IL-15 in vivo.


2003 ◽  
Vol 197 (11) ◽  
pp. 1573-1583 ◽  
Author(s):  
Jong-Dae Ji ◽  
Ioannis Tassiulas ◽  
Kyung-Hyun Park-Min ◽  
Ani Aydin ◽  
Ingrid Mecklenbräuker ◽  
...  

Interleukin-10 (IL-10) is a potent deactivator of myeloid cells that limits the intensity and duration of immune and inflammatory responses. The activity of IL-10 can be suppressed during inflammation, infection, or after allogeneic tissue transplantation. We investigated whether inflammatory factors suppress IL-10 activity at the level of signal transduction. Out of many factors tested, only ligation of Fc receptors by immune complexes inhibited IL-10 activation of the Jak-Stat signaling pathway. IL-10 signaling was suppressed in rheumatoid arthritis joint macrophages that are exposed to immune complexes in vivo. Activation of macrophages with interferon-γ was required for Fc receptor–mediated suppression of IL-10 signaling, which resulted in diminished activation of IL-10–inducible genes and reversal of IL-10–dependent suppression of cytokine production. The mechanism of inhibition involved decreased cell surface IL-10 receptor expression and Jak1 activation and was dependent on protein kinase C delta. These results establish that IL-10 signaling is regulated during inflammation and identify Fc receptors and interferon-γ as important regulators of IL-10 activity. Generation of macrophages refractory to IL-10 can contribute to pathogenesis of inflammatory and infectious diseases characterized by production of interferon-γ and immune complexes.


2008 ◽  
Vol 76 (12) ◽  
pp. 5810-5816 ◽  
Author(s):  
Andréa Teixeira-Carvalho ◽  
Ricardo T. Fujiwara ◽  
Erik J. Stemmy ◽  
Denise Olive ◽  
Jesse M. Damsker ◽  
...  

ABSTRACT The impact of the interaction between excreted and/or secreted (ES) Necator americanus products and NK cells from Necator-infected individuals was analyzed. We investigated the binding of ES products to NK cells, the expression of NK cell receptors (CD56, CD159a/NKG2A, CD314/NKG2D, CD335/NKp46, and KLRF1/NKp80), the frequency of gamma interferon (IFN-γ)-producing NK cells after whole-blood in vitro stimulation, and the capacity of N. americanus ES products to induce NK cell chemotaxis. In contrast to those from noninfected individuals, NK cells from Necator-infected individuals demonstrated no binding with N. americanus ES products. This phenomenon was not due to alterations in NK cell receptor expression in infected subjects and could not be reproduced with NK cells from uninfected individuals by incubation with immunoregulatory cytokines (interleukin-10/transforming growth factor β). Further, we found that a significantly greater percentage of NK cells from infected subjects than NK cells from uninfected individuals spontaneously produced IFN-γ upon ex vivo culture. Our findings support a model whereby NK cells from Necator-infected individuals may interact with ES products, making these cells refractory to binding with exogenous ES products. During N. americanus infection, human NK cells are attracted to the site of infection by chemotactic ES products produced by adult Necator worms in the gut mucosa. Binding of ES products causes the NK cells to become activated and secrete IFN-γ locally, thereby contributing to the adult hookworm's ability to evade host immune responses.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Xiao-Chang Xue ◽  
Zhen Yan ◽  
Wei-Na Li ◽  
Meng Li ◽  
Xin Qin ◽  
...  

Thymosin alpha 1 (Tα1), which is composed of 28 amino acids, has been commercialized worldwide for its immune-modulatory and antitumor effects. Tα1 can stimulate T cell proliferation and differentiation from bone marrow stem cells, augment cell-mediated immune responses, and regulate homeostasis of immune system. In this study, we developed a novel strategy to produce Tα1 concatemer (Tα1③) inEscherichia coliand compared its activity with chemically synthesized Tα1. Results showed that Tα1③can more effectively stimulate T cell proliferation and significantly upregulate IL-2 receptor expression. We concluded that the expression system for Tα1 concatemer was constructed successfully, which could serve as an efficient tool for the production of large quantities of the active protein.


Sign in / Sign up

Export Citation Format

Share Document