scholarly journals Systemic and local effect of the Drosophila headcase gene and its role in stress protection of Adult Progenitor Cells

PLoS Genetics ◽  
2021 ◽  
Vol 17 (2) ◽  
pp. e1009362
Author(s):  
Panagiotis Giannios ◽  
Jordi Casanova

During the development of a holometabolous insect such as Drosophila, specific group of cells in the larva survive during metamorphosis, unlike the other larval cells, and finally give rise to the differentiated adult structures. These cells, also known as Adult Progenitor Cells (APCs), maintain their multipotent capacity, differentially respond to hormonal and nutritional signals, survive the intrinsic and environmental stress and respond to the final differentiation cues. However, not much is known about the specific molecular mechanisms that account for their unique characteristics. Here we show that a specific Drosophila APC gene, headcase (hdc), has a dual role in the normal development of these cells. It acts at a systemic level by controlling the hormone ecdysone in the prothoracic gland and at the same time it acts locally as a tissue growth suppressor in the APC clusters, where it modulates the activity of the TOR pathway and promotes their survival by contributing in the regulation of the Unfolded Protein Response. We also show that hdc provides protection against stress in the APCs and that its ectopic expression in cells that do not usually express hdc can confer these cells with an additional stress protection. Hdc is the founding member of a group of homolog proteins identified from C. elegans to humans, where has been found associated with cancer progression. The finding that the Drosophila hdc is specifically expressed in progenitor cells and that it provides protection against stress opens up a new hypothesis to be explored regarding the role of the human Heca and its contribution to carcinogenesis.

2020 ◽  
Vol 19 (1) ◽  
Author(s):  
You Shuai ◽  
Zhonghua Ma ◽  
Weitao Liu ◽  
Tao Yu ◽  
Changsheng Yan ◽  
...  

Abstract Background Gastric cancer (GC) is the third leading cause of cancer-related mortality globally. Long noncoding RNAs (lncRNAs) are dysregulated in obvious malignancies including GC and exploring the regulatory mechanisms underlying their expression is an attractive research area. However, these molecular mechanisms require further clarification, especially upstream mechanisms. Methods LncRNA MNX1-AS1 expression in GC tissue samples was investigated via microarray analysis and further determined in a cohort of GC tissues via quantitative reverse transcription polymerase chain reaction (qRT-PCR) assays. Cell proliferation and flow cytometry assays were performed to confirm the roles of MNX1-AS1 in GC proliferation, cell cycle regulation, and apoptosis. The influence of MNX1-AS1 on GC cell migration and invasion was explored with Transwell assays. A xenograft tumour model was established to verify the effects of MNX1-AS1 on in vivo tumourigenesis. The TEAD4-involved upstream regulatory mechanism of MNX1-AS1 was explored through ChIP and luciferase reporter assays. The mechanistic model of MNX1-AS1 in regulating gene expression was further detected by subcellular fractionation, FISH, RIP, ChIP and luciferase reporter assays. Results It was found that MNX1-AS1 displayed obvious upregulation in GC tissue samples and cell lines, and ectopic expression of MNX1-AS1 predicted poor clinical outcomes for patients with GC. Overexpressed MNX1-AS1 expression promoted proliferation, migration and invasion of GC cells markedly, whereas decreased MNX1-AS1 expression elicited the opposite effects. Consistent with the in vitro results, MNX1-AS1 depletion effectively inhibited the growth of xenograft tumour in vivo. Mechanistically, TEAD4 directly bound the promoter region of MNX1-AS1 and stimulated the transcription of MNX1-AS1. Furthermore, MNX1-AS1 can sponge miR-6785-5p to upregulate the expression of BCL2 in GC cells. Meanwhile, MNX1-AS1 suppressed the transcription of BTG2 by recruiting polycomb repressive complex 2 to BTG2 promoter regions. Conclusions Our findings demonstrate that MNX1-AS1 may be able to serve as a prognostic indicator in GC patients and that TEAD4-activatd MNX1-AS1 can promote GC progression through EZH2/BTG2 and miR-6785-5p/BCL2 axes, implicating it as a novel and potent target for the treatment of GC.


2013 ◽  
Vol 137 (2) ◽  
pp. 245-250 ◽  
Author(s):  
Patricia Garcia ◽  
Pamela Leal ◽  
Hector Alvarez ◽  
Priscilla Brebi ◽  
Carmen Ili ◽  
...  

Context.— Gallbladder cancer (GBC) is an aggressive neoplasia associated with late diagnosis, unsatisfactory treatment, and poor prognosis. Molecular mechanisms involved in GBC pathogenesis remain poorly understood. Connective tissue growth factor (CTGF) is thought to play a role in the pathologic processes and is overexpressed in several human cancers, including GBC. No information is available about CTGF expression in early stages of gallbladder carcinogenesis. Objective.— To evaluate the expression level of CTGF in benign and malignant lesions of gallbladder and its correlation with clinicopathologic features and GBC prognosis. Design.— Connective tissue growth factor protein was examined by immunohistochemistry on tissue microarrays containing tissue samples of chronic cholecystitis (n = 51), dysplasia (n = 15), and GBC (n = 169). The samples were scored according to intensity of staining as low/absent and high CTGF expressers. Statistical analysis was performed using the χ2 test or Fisher exact probability test with a significance level of P < .05. Survival analysis was assessed by the Kaplan-Meier method and the log-rank test. Results.— Connective tissue growth factor expression showed a progressive increase from chronic cholecystitis to dysplasia and then to early and advanced carcinoma. Immunohistochemical expression (score ≥2) was significantly higher in advanced tumors, in comparison with chronic cholecystitis (P < .001) and dysplasia (P = .03). High levels of CTGF expression correlated with better survival (P = .04). Conclusions.— Our results suggest a role for CTGF in GBC progression and a positive association with better prognosis. In addition, they underscore the importance of considering the involvement of inflammation on GBC development.


2020 ◽  
Vol 117 (24) ◽  
pp. 13552-13561 ◽  
Author(s):  
Ksenia Gnedeva ◽  
Xizi Wang ◽  
Melissa M. McGovern ◽  
Matthew Barton ◽  
Litao Tao ◽  
...  

Precise control of organ growth and patterning is executed through a balanced regulation of progenitor self-renewal and differentiation. In the auditory sensory epithelium—the organ of Corti—progenitor cells exit the cell cycle in a coordinated wave between E12.5 and E14.5 before the initiation of sensory receptor cell differentiation, making it a unique system for studying the molecular mechanisms controlling the switch between proliferation and differentiation. Here we identify the Yap/Tead complex as a key regulator of the self-renewal gene network in organ of Corti progenitor cells. We show that Tead transcription factors bind directly to the putative regulatory elements of many stemness- and cell cycle-related genes. We also show that the Tead coactivator protein, Yap, is degraded specifically in the Sox2-positive domain of the cochlear duct, resulting in down-regulation of Tead gene targets. Further, conditional loss of theYapgene in the inner ear results in the formation of significantly smaller auditory and vestibular sensory epithelia, while conditional overexpression of a constitutively active version ofYap,Yap5SA, is sufficient to prevent cell cycle exit and to prolong sensory tissue growth. We also show that viral gene delivery ofYap5SAin the postnatal inner ear sensory epithelia in vivo drives cell cycle reentry after hair cell loss. Taken together, these data highlight the key role of the Yap/Tead transcription factor complex in maintaining inner ear progenitors during development, and suggest new strategies to induce sensory cell regeneration.


2008 ◽  
Vol 29 (2) ◽  
pp. 234-252 ◽  
Author(s):  
Murielle Mimeault ◽  
Parmender P. Mehta ◽  
Ralph Hauke ◽  
Surinder K. Batra

Abstract This review summarizes the recent advancements that have improved our understanding of the functions of prostatic stem/progenitor cells in maintaining homeostasis of the prostate gland. We also describe the oncogenic events that may contribute to their malignant transformation into prostatic cancer stem/progenitor cells during cancer initiation and progression to metastatic disease stages. The molecular mechanisms that may contribute to the intrinsic or the acquisition of a resistant phenotype by the prostatic cancer stem/progenitor cells and their differentiated progenies with a luminal phenotype to the current therapies and disease relapse are also reviewed. The emphasis is on the critical functions of distinct tumorigenic signaling cascades induced through the epidermal growth factor system, hedgehog, Wnt/β-catenin, and/or stromal cell-derived factor-1/CXC chemokine receptor-4 pathways as well as the deregulated apoptotic signaling elements and ATP-binding cassette multidrug transporter. Of particular therapeutic interest, we also discuss the potential beneficial effects associated with the targeting of these signaling elements to overcome the resistance to current treatments and prostate cancer recurrence. The combined targeted strategies toward distinct oncogenic signaling cascades in prostatic cancer stem/progenitor cells and their progenies as well as their local microenvironment, which could improve the efficacy of current clinical chemotherapeutic treatments against incurable, androgen-independent, and metastatic prostate cancers, are also described.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Fei Xie ◽  
Chao Huang ◽  
Feng Liu ◽  
Hui Zhang ◽  
Xingyuan Xiao ◽  
...  

Abstract Background Circular RNAs (circRNAs) have been found to have significant impacts on bladder cancer (BC) progression through various mechanisms. In this study, we aimed to identify novel circRNAs that regulate the function of IGF2BP1, a key m6A reader, and explore the regulatory mechanisms and clinical significances in BC. Methods Firstly, the clinical role of IGF2BP1 in BC was studied. Then, RNA immunoprecipitation sequencing (RIP-seq) analysis was performed to identify the circRNAs interacted with IGF2BP1 in BC cells. The overall biological roles of IGF2BP1 and the candidate circPTPRA were investigated in both BC cell lines and animal xenograft studies. Subsequently, we evaluated the regulation effects of circPTPRA on IGF2BP1 and screened out its target genes through RNA sequencing. Finally, we explored the underlying molecular mechanisms that circPTPRA might act as a blocker in recognition of m6A. Results We demonstrated that IGF2BP1 was predominantly binded with circPTPRA in the cytoplasm in BC cells. Ectopic expression of circPTPRA abolished the promotion of cell proliferation, migration and invasion of BC cells induced by IGF2BP1. Importantly, circPTPRA downregulated IGF2BP1-regulation of MYC and FSCN1 expression via interacting with IGF2BP1. Moreover, the recognition of m6A-modified RNAs mediated by IGF2BP1 was partly disturbed by circPTPRA through its interaction with KH domains of IGF2BP1. Conclusions This study identifies exonic circular circPTPRA as a new tumor suppressor that inhibits cancer progression through endogenous blocking the recognition of IGF2BP1 to m6A-modified RNAs, indicating that circPTPRA may serve as an exploitable therapeutic target for patients with BC.


2017 ◽  
Vol 95 (5) ◽  
pp. 531-536 ◽  
Author(s):  
V. Cázares-Ordoñez ◽  
L.A. Pardo

The KCNH1 gene encodes the Kv10.1 (Eag1) ion channel, a member of the EAG (ether-à-go-go) family of voltage-gated potassium channels. Recent studies have demonstrated that KCHN1 mutations are implicated in Temple–Baraitser and Zimmermann–Laband syndromes and other forms of developmental deficits that all present with mental retardation and epilepsy, suggesting that Kv10.1 might be important for cognitive development in humans. Although the Kv10.1 channel is mainly expressed in the mammalian brain, its ectopic expression occurs in 70% of human cancers. Cancer cells and tumors expressing Kv10.1 acquire selective advantages that favor cancer progression through molecular mechanisms that involve several cellular pathways, indicating that protein–protein interactions may be important for Kv10.1 influence in cell proliferation and tumorigenesis. Several studies on transcriptional and post-transcriptional regulation of Kv10.1 expression have shown interesting mechanistic insights about Kv10.1 role in oncogenesis, increasing the importance of identifying the cellular factors that regulate Kv10.1 expression in tumors.


2020 ◽  
Author(s):  
Jing Luo ◽  
Huishan Wang ◽  
Li Wang ◽  
Gaoming Wang ◽  
Yu Yao ◽  
...  

Abstract BackgroundGlucose metabolism reprogramming is one of the hallmarks of cancer cells. While functional and regulatory mechanism of long noncoding RNA (lncRNA) in the contribution of glucose metabolism in lung adenocarcinoma (LUAD) remains incompletely understood. The aim of this study was to uncover the roles for GAS6-AS1 in the regulation of progression and glucose metabolism in LUAD.MethodsThe tumor-suppressive function of GAS6-AS1 was determined by experiments in vitro and nude mice xenograft models. The role of GAS6-AS1 in regulating cancer glucose metabolism was proved by detecting glucose uptake, lactate production, pyruvate production and extracellular acidification rate (ECAR). RNA pull-down assay, RNA immunoprecipitation (RIP) assay, luciferase reporter assay and Chromatin Immunoprecipitation (ChIP) assay were used to identify the underlying molecular mechanisms of GAS6-AS1. And the expression level of GAS6-AS1 in LUAD tissues and cells was measured by quantitative real-time PCR.ResultsOverexpression of GAS6-AS1 suppressed tumor progression of LUAD both in vitro and in vivo. Metabolic-related assays revealed that GAS6-AS1 inhibited glucose metabolism reprogramming. Mechanically, GAS6-AS1 was found to repress the expression of glucose transporter GLUT1, a key regulator of glucose metabolism. Ectopic expression of GLUT1 restored the inhibition effect of GAS6-AS1 on cancer progression and glucose metabolism reprogramming. Further investigation identified that GAS6-AS1 directly interacted with transcription factor E2F1 and suppressed E2F1-mediated transcription of GLUT1. And GAS6-AS1 was downregulated in LUAD tissues and correlated with clinicopathological characteristics and survival of patients.ConclusionsTaken together, our results identified GAS6-AS1 as a novel tumor suppressor in LUAD and unraveled its underlying molecular mechanism in reprogramming glucose metabolism. GAS6-AS1 potentially served as a prognostic marker and therapeutic target in LUAD.


2018 ◽  
Vol 18 (2) ◽  
pp. 156-165 ◽  
Author(s):  
Jiaqiang Wang ◽  
Chien-shan Cheng ◽  
Yan Lu ◽  
Xiaowei Ding ◽  
Minmin Zhu ◽  
...  

Background: Propofol, a widely used intravenous anesthetic agent, is traditionally applied for sedation and general anesthesia. Explanation: Recent attention has been drawn to explore the effect and mechanisms of propofol against cancer progression in vitro and in vivo. Specifically, the proliferation-inhibiting and apoptosis-inducing properties of propofol in cancer have been studied. However, the underlying mechanisms remain unclear. Conclusion: This review focused on the findings within the past ten years and aimed to provide a general overview of propofol's malignance-modulating properties and the potential molecular mechanisms.


Sign in / Sign up

Export Citation Format

Share Document