scholarly journals KCTD19 and its associated protein ZFP541 are independently essential for meiosis in male mice

PLoS Genetics ◽  
2021 ◽  
Vol 17 (5) ◽  
pp. e1009412
Author(s):  
Seiya Oura ◽  
Takayuki Koyano ◽  
Chisato Kodera ◽  
Yuki Horisawa-Takada ◽  
Makoto Matsuyama ◽  
...  

Meiosis is a cell division process with complex chromosome events where various molecules must work in tandem. To find meiosis-related genes, we screened evolutionarily conserved and reproductive tract-enriched genes using the CRISPR/Cas9 system and identified potassium channel tetramerization domain containing 19 (Kctd19) as an essential factor for meiosis. In prophase I, Kctd19 deficiency did not affect synapsis or the DNA damage response, and chiasma structures were also observed in metaphase I spermatocytes of Kctd19 KO mice. However, spermatocytes underwent apoptotic elimination during the metaphase-anaphase transition. We were able to rescue the Kctd19 KO phenotype with an epitope-tagged Kctd19 transgene. By immunoprecipitation-mass spectrometry, we confirmed the association of KCTD19 with zinc finger protein 541 (ZFP541) and histone deacetylase 1 (HDAC1). Phenotyping of Zfp541 KO spermatocytes demonstrated XY chromosome asynapsis and recurrent DNA damage in the late pachytene stage, leading to apoptosis. In summary, our study reveals that KCTD19 associates with ZFP541 and HDAC1, and that both KCTD19 and ZFP541 are essential for meiosis in male mice.

Author(s):  
Seiya Oura ◽  
Takayuki Koyano ◽  
Chisato Kodera ◽  
Yuki Horisawa-Takada ◽  
Makoto Matsuyama ◽  
...  

AbstractMeiosis is a cell division process with complex chromosome events where various molecules must work in tandem. To find meiosis-related genes, we screened evolutionarily conserved and reproductive tract-enriched genes using the CRISPR/Cas9 system and identified potassium channel tetramerization domain containing 19 (Kctd19) as an essential factor for meiosis. In prophase I, Kctd19 deficiency did not affect synapsis or the DNA damage response, and chiasma structures were also observed in metaphase I spermatocytes of Kctd19 KO mice. However, spermatocytes underwent apoptotic elimination during the metaphase-anaphase transition. We were able to rescue the Kctd19 KO phenotype with an epitope-tagged Kctd19 transgene. Immunoprecipitation-mass spectrometry identified zinc finger protein 541 (ZFP541) and histone deacetylase 1 (HDAC1) as binding partners of KCTD19, indicating that KCTD19 is involved in chromatin modification. Phenotyping of Zfp541 KO spermatocytes demonstrated XY chromosome asynapsis and recurrent DNA damage in the late pachytene stage, leading to apoptosis. In summary, our study reveals that KCTD19 associates with ZFP541 and HDAC1, and that both KCTD19 and ZFP541 were essential for meiotic exit in male mice.Author summaryMeiosis is a fundamental process that consisting of one round of genomic DNA replication and two rounds of chromosome segregation producing four haploid cells. To properly distribute their genetic material, cells need to undergo complex chromosome events such as a physical linkage of homologous chromosomes (termed synapsis) and meiotic recombination. The molecules involved in these events have not been fully characterized yet, especially in mammals. Using a CRISPR/Cas9-screening system, we identified the potassium channel tetramerization domain containing 19 (Kctd19) as an essential factor for meiosis in male mice. Further, we identified zinc finger protein 541 (ZFP541) and histone deacetylase 1 (HDAC1) as binding partners of KCTD19. By observing meiosis of Zfp541 knockout germ cells, we found that Zfp541 was also essential for meiotic completion. These results show that the KCTD19/ZFP541 complex plays a critical role and is indispensable for male meiosis and fertility.


2021 ◽  
Author(s):  
Yushan Li ◽  
Ranran Meng ◽  
Shanze Li ◽  
Bowen Gu ◽  
Xiaotong Xu ◽  
...  

Meiosis is essential for fertility in sexually reproducing species, extensive studies tried to delineate this sophisticated process. Notwithstanding, the molecules involved in meiosis have not been fully characterized. In this study, we investigate the role of zinc finger protein 541 (ZFP541) and its interacting protein potassium channel tetramerization domain containing 19 (KCTD19) in mice. We demonstrate that they are indispensable for male fertility by regulating proper pachytene progression. ZFP541 is expressed starting from leptotene to round spermatids, and KCTD19 is initially expressed in pachytene. Depletion of Zfp541 or Kctd19 leads to infertility in male mice, and exhibits retarded progression from early to mid/late pachynema. In addition, Zfp541-/- spermatocytes show abnormal programmed DNA double-strand breaks (DSBs) repair, impaired crossover formation/resolution, and asynapsis of the XY chromosomes. Immunoprecipitation-mass spectrometry (IP-MS) and in vitro Co-IP reveal that ZFP541 interacts with KCTD19, histone deacetylase 1/2 (HDAC1), HDAC2 and deoxynucleotidyltransferase terminal-interacting protein 1 (DNTTIP1). Furthermore, RNA-seq and CUT&Tag analyses demonstrate that ZFP541 binds to the promoter regions of genes involved in meiosis and post-meiosis including Kctd19, and activates their transcription. Taken together, our studies reveal a ZFP541-Kctd19 transcription regulatory axis and the crucial role of ZFP541 and KCTD19 for pachytene progression and fertility in male mice.


2020 ◽  
Vol 11 (7) ◽  
Author(s):  
Nan Huang ◽  
Chang Xu ◽  
Liang Deng ◽  
Xue Li ◽  
Zhixuan Bian ◽  
...  

AbstractPhosphoribosylaminoimidazole carboxylase, phosphoribosylaminoimidazole succinocarboxamide synthetase (PAICS), an essential enzyme involved in de novo purine biosynthesis, is connected with formation of various tumors. However, the specific biological roles and related mechanisms of PAICS in gastric cancer (GC) remain unclear. In the present study, we identified for the first time that PAICS was significantly upregulated in GC and high expression of PAICS was correlated with poor prognosis of patients with GC. In addition, knockdown of PAICS significantly induced cell apoptosis, and inhibited GC cell growth both in vitro and in vivo. Mechanistic studies first found that PAICS was engaged in DNA damage response, and knockdown of PAICS in GC cell lines induced DNA damage and impaired DNA damage repair efficiency. Further explorations revealed that PAICS interacted with histone deacetylase HDAC1 and HDAC2, and PAICS deficiency decreased the expression of DAD51 and inhibited its recruitment to DNA damage sites by impairing HDAC1/2 deacetylase activity, eventually preventing DNA damage repair. Consistently, PAICS deficiency enhanced the sensitivity of GC cells to DNA damage agent, cisplatin (CDDP), both in vitro and in vivo. Altogether, our findings demonstrate that PAICS plays an oncogenic role in GC, which act as a novel diagnosis and prognostic biomarker for patients with GC.


1973 ◽  
Vol 12 (1) ◽  
pp. 71-93
Author(s):  
LESLEY WATSON COGGINS

Early oogenesis in the toad Xenopus laevis has been investigated at the ultrastructural level, with particular reference to the formation of extrachromosomal DNA. Thymidine incorporation was localized by electron microscope radioautography. In oogonia, the nucleus is irregular in outline and may contain several nucleoli. Oocytes, from premeiotic interphase to late pachytene, are found in cell nests which are estimated to consist of about 16 cells each. Adjacent oocytes within a nest are connected by intercellular bridges and develop synchronously. Each premeiotic interphase-leptotene oocyte has a round nucleus which contains one or two centrally located, spherical nucleoli. Electron-microscope radioautography showed that all nuclei in a cell nest incorporate thymidine synchronously during premeiotic S-phase. In zygotene oocytes, axial cores and synaptonemal complexes are observed in the nucleus and abut against the inner nuclear membrane in the region nearest the centre of the cell nest. The nucleolus is still more-or-less round in outline, but is asymmetrically positioned in the nucleus. It lies near the nuclear envelope on the side of the nucleus furthest away from the attachment of the chromosome ends, that is, nearest the outside of the cell nest. Each nucleolus is surrounded by a fibrillar ‘halo’ of nucleolus-associated chromatin into which a low level of thymidine incorporation occurs during zygotene. This is thought to represent the start of the major period of amplification of the ribosomal DNA. Pachytene is characterized by the presence of synaptonemal complexes in the nucleus. The nucleolus becomes very irregular in outline. The fibrillar area around it, which represents the extrachromosomal DNA, increases in size and thymidine is incorporated over the whole of this region. In late pachytene, many small fibrogranular bodies, the multiple nucleoli, are formed in it. The members of a cell nest become separated from one another at this time and begin to develop asynchronously. In diplotene, synaptonemal complexes are no longer observed in the nucleus. The most prominent structures in the nucleus are now the multiple nucleoli, which increase greatly in number in early diplotene. A large increase in cytoplasmic volume occurs and the oocyte grows in size.


2016 ◽  
Vol 13 (114) ◽  
pp. 20150679 ◽  
Author(s):  
Philip J. Murray ◽  
Bart Cornelissen ◽  
Katherine A. Vallis ◽  
S. Jon Chapman

DNA double-strand breaks (DSBs) are formed as a result of genotoxic insults, such as exogenous ionizing radiation, and are among the most serious types of DNA damage. One of the earliest molecular responses following DSB formation is the phosphorylation of the histone H2AX, giving rise to γ H2AX. Many copies of γ H2AX are generated at DSBs and can be detected in vitro as foci using well-established immuno-histochemical methods. It has previously been shown that anti- γ H2AX antibodies, modified by the addition of the cell-penetrating peptide TAT and a fluorescent or radionuclide label, can be used to visualize and quantify DSBs in vivo . Moreover, when labelled with a high amount of the short-range, Auger electron-emitting radioisotope, 111 In, the amount of DNA damage within a cell can be increased, leading to cell death. In this report, we develop a mathematical model that describes how molecular processes at individual sites of DNA damage give rise to quantifiable foci. Equations that describe stochastic mean behaviours at individual DSB sites are derived and parametrized using population-scale, time-series measurements from two different cancer cell lines. The model is used to examine two case studies in which the introduction of an antibody (anti- γ H2AX-TAT) that targets a key component in the DSB repair pathway influences system behaviour. We investigate: (i) how the interaction between anti- γ H2AX-TAT and γ H2AX effects the kinetics of H2AX phosphorylation and DSB repair and (ii) model behaviour when the anti- γ H2AX antibody is labelled with Auger electron-emitting 111 In and can thus instigate additional DNA damage. This work supports the conclusion that DSB kinetics are largely unaffected by the introduction of the anti- γ H2AX antibody, a result that has been validated experimentally, and hence the hypothesis that the use of anti- γ H2AX antibody to quantify DSBs does not violate the image tracer principle. Moreover, it provides a novel model of DNA damage accumulation in the presence of Auger electron-emitting 111 In that is supported qualitatively by the available experimental data.


2021 ◽  
Author(s):  
Zhiqiang Liu ◽  
Xin Li ◽  
Sheng Wang ◽  
Ying Xie ◽  
Hongmei Jiang ◽  
...  

Abstract Acquired chemoresistance to proteasome inhibitors (PIs) is a major obstacle that results in failure to manage patients with multiple myeloma (MM) in the clinic; however, the key regulators and underlying mechanisms are still unclear. In this study, we found that high levels of a chromosomal modifier, heterochromatin protein 1 gamma (HP1γ), are accompanied by a low acetylation level in bortezomib-resistant (BR) MM cells, and aberrant DNA repair capacity is correlated with HP1γ overexpression. Mechanistically, the deacetylation of HP1γ at lysine 5 by histone deacetylase 1 (HDAC1) alleviates HP1γ ubiquitination, and the stabilized HP1γ recruits the mediator of DNA damage checkpoint 1 (MDC1) to induce DNA damage repair. Simultaneously, deacetylation modification and MDC1 recruitment enhance the nuclear condensate of HP1γ, which facilitates the chromatin accessibility of genes governing sensitivity to PIs, such as FOS, JUN and CD40. Thus, targeting HP1γ stability using the HDAC1/2 inhibitor, romidepsin, sensitizes PIs treatment and overcomes drug resistance both in vitro and in vivo. Our findings elucidate a previously unrecognized role of HP1γ in the acquired drug resistance of MM and suggest that targeting HP1γ may be efficacious for overcoming drug resistance in MM patients.


Development ◽  
2001 ◽  
Vol 128 (5) ◽  
pp. 711-722 ◽  
Author(s):  
T.E. Rusten ◽  
R. Cantera ◽  
J. Urban ◽  
G. Technau ◽  
F.C. Kafatos ◽  
...  

Genes of the spalt family encode nuclear zinc finger proteins. In Drosophila melanogaster, they are necessary for the establishment of head/trunk identity, correct tracheal migration and patterning of the wing imaginal disc. Spalt proteins display a predominant pattern of expression in the nervous system, not only in Drosophila but also in species of fish, mouse, frog and human, suggesting an evolutionarily conserved role for these proteins in nervous system development. Here we show that Spalt works as a cell fate switch between two EGFR-induced cell types, the oenocytes and the precursors of the pentascolopodial organ in the embryonic peripheral nervous system. We show that removal of spalt increases the number of scolopodia, as a result of extra secondary recruitment of precursor cells at the expense of the oenocytes. In addition, the absence of spalt causes defects in the normal migration of the pentascolopodial organ. The dual function of spalt in the development of this organ, recruitment of precursors and migration, is reminiscent of its role in tracheal formation and of the role of a spalt homologue, sem-4, in the Caenorhabditis elegans nervous system.


2000 ◽  
Vol 14 (16) ◽  
pp. 2072-2084
Author(s):  
Babette S. Heyer ◽  
Alasdair MacAuley ◽  
Ole Behrendtsen ◽  
Zena Werb

Gastrulation in mice is associated with the start of extreme proliferation and differentiation. The potential cost to the embryo of a very rapid proliferation rate is a high production of damaged cells. We demonstrate a novel surveillance mechanism for the elimination of cells damaged by ionizing radiation during mouse gastrulation. During this restricted developmental window, the embryo becomes hypersensitive to DNA damage induced by low dose irradiation (<0.5 Gy) and undergoes apoptosis without cell cycle arrest. Intriguingly, embryonic cells, including germ cell progenitors, but not extraembryonic cells, become hypersensitive to genotoxic stress and undergo Atm- and p53-dependent apoptosis. Thus, hypersensitivity to apoptosis in the early mouse embryo is a cell fate-dependent mechanism to ensure genomic integrity during a period of extreme proliferation and differentiation.


2020 ◽  
Vol 40 (20) ◽  
Author(s):  
Shivnarayan Dhuppar ◽  
Sitara Roy ◽  
Aprotim Mazumder

ABSTRACT Ultraviolet (UV) radiation is a major environmental mutagen. Exposure to UV leads to a sharp peak of γH2AX, the phosphorylated form of the histone variant H2AX, in the S phase within an asynchronous population of cells. γH2AX is often considered a definitive marker of DNA damage inside a cell. In this report, we show that γH2AX in the S-phase cells after UV irradiation reports neither on the extent of primary DNA damage in the form of cyclobutane pyrimidine dimers nor on the extent of its secondary manifestations in the form of DNA double-strand breaks or in the inhibition of global transcription. Instead, γH2AX in the S phase corresponds to the sites of active replication at the time of UV irradiation. This accumulation of γH2AX at replication sites slows down the replication. However, the cells do complete the replication of their genomes and arrest within the G2 phase. Our study suggests that it is not DNA damage, but the response elicited, which peaks in the S phase upon UV irradiation.


2008 ◽  
Vol 20 (9) ◽  
pp. 30
Author(s):  
M. Gamat ◽  
M. B. Renfree ◽  
A. J. Pask ◽  
G. Shaw

Androgens induce the differentiation of the urogenital sinus (UGS) to form a prostate. An early marker of this response is upregulation of the transcription factor Nkx3.1 in the urogenital epithelium in the precursors of prostatic buds. In tammars, prostate differentiation begins ~3 weeks after birth and after the time the testis starts to secrete androgens, and 2 weeks after androgen stimulated Wolffian duct differentiation. The reason for this delay in prostate differentiation is unexplained. Androgen receptors are present in the UGS, and the potent androgen, androstanediol, induces prostatic development in females. Whilst androgens may diffuse into cells by across the cell membrane, there is increasing evidence that steroids are also internalised actively via the cell-surface transport molecule Megalin. We are exploring the possibility that the delay may be related to the establishment of a Megalin-mediated pathway. Megalin is a cell surface receptor expressed on epithelia and mediates the endocytosis of a wide range of ligands, including SHBG-bound sex steroids. Megalin action is regulated by Receptor Associated Protein (RAP), which acts as an antagonist to Megalin action. This study cloned partial sequences of Megalin, RAP and Nkx3.1 and examined their expression in the developing urogenital sinus of the tammar wallaby using RT–PCR. The cellular distribution of Megalin protein in the developing UGS was examined using immunohistochemistry. Megalin, RAP and Nkx3.1 in the tammar were all highly conserved with eutherian orthologueues. Megalin and Nkx3.1 transcripts were detected in the liver, kidney, ovary, testis and developing urogenital sinus of male and female tammars. In the developing UGS of the tammar, there was strong staining for Megalin protein in the urogenital epithelium with some diffuse staining in the surrounding mesenchyme. Together, these results suggest that Megalin could be a key gene in the mediation of androgen action in prostatic development in the tammar wallaby.


Sign in / Sign up

Export Citation Format

Share Document