scholarly journals Somatostatin Inhibits Cell Migration and Reduces Cell Counts of Human Keratinocytes and Delays Epidermal Wound Healing in an Ex Vivo Wound Model

PLoS ONE ◽  
2011 ◽  
Vol 6 (5) ◽  
pp. e19740 ◽  
Author(s):  
Matthias Vockel ◽  
Simone Pollok ◽  
Ute Breitenbach ◽  
Ina Ridderbusch ◽  
Hans-Jürgen Kreienkamp ◽  
...  
Author(s):  
Gil Topman ◽  
Orna Sharabani-Yosef ◽  
Amit Gefen

A wound healing assay is simple but effective method to study cell migration in vitro. Cell migration in vitro was found to mimic migration in vivo to some extent [1,2]. In wound healing assays, a “wound” is created by either scraping or mechanically crushing cells in a monolayer, thereby forming a denuded area. Cells migrate into the denuded area to complete coverage, and thereby “heal” the wound. Micrographs at regular time intervals are captured during such experiments for analysis of the process of migration.


2019 ◽  
Vol 139 (5) ◽  
pp. S161
Author(s):  
A.V. Caserta ◽  
J.E. Neil ◽  
J. Volmer ◽  
L. Ring ◽  
J. Lenn ◽  
...  

Biomedicines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1925
Author(s):  
Laura T. Fee ◽  
Debananda Gogoi ◽  
Michael E. O’Brien ◽  
Emer McHugh ◽  
Michelle Casey ◽  
...  

Alpha-1 antitrypsin (AAT) deficiency (AATD) is characterized by increased risk for emphysema, chronic obstructive pulmonary disease (COPD), vasculitis, and wound-healing impairment. Neutrophils play a central role in the pathogenesis of AATD. Dysregulated complement activation in AATD results in increased plasma levels of C3d. The current study investigated the impact of C3d on circulating neutrophils. Blood was collected from AATD (n = 88) or non-AATD COPD patients (n = 10) and healthy controls (HC) (n = 40). Neutrophils were challenged with C3d, and degranulation was assessed by Western blotting, ELISA, or fluorescence resonance energy transfer (FRET) substrate assays. Ex vivo, C3d levels were increased in plasma (p < 0.0001) and on neutrophil plasma membranes (p = 0.038) in AATD compared to HC. C3d binding to CR3 receptors triggered primary (p = 0.01), secondary (p = 0.004), and tertiary (p = 0.018) granule release and increased CXCL8 secretion (p = 0.02). Ex vivo plasma levels of bactericidal-permeability-increasing-protein (p = 0.02), myeloperoxidase (p < 0.0001), and lactoferrin (p < 0.0001) were significantly increased in AATD patients. In endothelial cell scratch wound assays, C3d significantly decreased cell migration (p < 0.0001), an effect potentiated by neutrophil degranulated proteins (p < 0.0001). In summary, AATD patients had increased C3d in plasma and on neutrophil membranes and, together with neutrophil-released granule enzymes, reduced endothelial cell migration and wound healing, with potential implications for AATD-related vasculitis.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ana Rakita ◽  
Nenad Nikolić ◽  
Michael Mildner ◽  
Johannes Matiasek ◽  
Adelheid Elbe-Bürger

AbstractA large body of literature is available on wound healing in humans. Nonetheless, a standardized ex vivo wound model without disruption of the dermal compartment has not been put forward with compelling justification. Here, we present a novel wound model based on application of negative pressure and its effects for epidermal regeneration and immune cell behaviour. Importantly, the basement membrane remained intact after blister roof removal and keratinocytes were absent in the wounded area. Upon six days of culture, the wound was covered with one to three-cell thick K14+Ki67+ keratinocyte layers, indicating that proliferation and migration were involved in wound closure. After eight to twelve days, a multi-layered epidermis was formed expressing epidermal differentiation markers (K10, filaggrin, DSG-1, CDSN). Investigations about immune cell-specific manners revealed more T cells in the blister roof epidermis compared to normal epidermis. We identified several cell populations in blister roof epidermis and suction blister fluid that are absent in normal epidermis which correlated with their decrease in the dermis, indicating a dermal efflux upon negative pressure. Together, our model recapitulates the main features of epithelial wound regeneration, and can be applied for testing wound healing therapies and investigating underlying mechanisms.


2021 ◽  
Vol 41 (1) ◽  
Author(s):  
Azela Glady ◽  
Arno Vandebroek ◽  
Masato Yasui

Abstract Background Wound healing is a complex biological process and complete skin regeneration is still a critical challenge. Extracellular vesicles (EVs) play essential roles in cell communication and cell regeneration, and recent studies have suggested that EVs may contribute to wound healing, though the molecular mechanisms behind this contribution remain unclear. For these reasons, we decided to use EVs isolated from human keratinocytes (HaCaT) in vitro to determine the potential mechanism of action of EV-derived wound healing. Method Scratch assays were used to determine cell migration and proliferation. Scratched cells were exposed to EVs in multiple conditions to determine how they affect wound healing. Statistical analysis between groups was carried out to using Student’s two-sided t test. A p value of <  0.05 was considered statistically significant. Result We found that proteomic analysis of purified EVs shows enrichment of proteins associated with cell communication and signal transduction, such as MAPK pathways, and keratinocyte and fibroblast cultures exposed to EVs had higher levels of proliferation, migration, and ERK1/2 and P38 activation. Moreover, we found that treatment with specific ERK1/2 and P38 signaling inhibitors PD98059 and SB239063 impaired EV-mediated cell migration, which suggests that ERK1/2 and P38 signaling is essential for EV-induced wound healing. Conclusion HaCaT cell-derived EVs accelerate the migration and proliferation of human keratinocytes and fibroblasts and may promote wound healing via the activation of MAPKinase pathways. These findings may be key in developing new methods to treat wounds and accelerate wound healing in the future.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Saskia Seiser ◽  
Lukas Janker ◽  
Nina Zila ◽  
Michael Mildner ◽  
Ana Rakita ◽  
...  

AbstractOctenidine dihydrochloride (OCT) is a widely used antiseptic molecule, promoting skin wound healing accompanied with improved scar quality after surgical procedures. However, the mechanisms by which OCT is contributing to tissue regeneration are not yet completely clear. In this study, we have used a superficial wound model by tape stripping of ex vivo human skin. Protein profiles of wounded skin biopsies treated with OCT-containing hydrogel and the released secretome were analyzed using liquid chromatography-mass spectrometry (LC–MS) and enzyme-linked immunosorbent assay (ELISA), respectively. Proteomics analysis of OCT-treated skin wounds revealed significant lower levels of key players in tissue remodeling as well as reepithelization after wounding such as pro-inflammatory cytokines (IL-8, IL-6) and matrix-metalloproteinases (MMP1, MMP2, MMP3, MMP9) when compared to controls. In addition, enzymatic activity of several released MMPs into culture supernatants was significantly lower in OCT-treated samples. Our data give insights on the mode of action based on which OCT positively influences wound healing and identified anti-inflammatory and protease-inhibitory activities of OCT.


2020 ◽  
Author(s):  
Lauren Pruett ◽  
Christian Jenkins ◽  
Neharika Singh ◽  
Katarina Catallo ◽  
Donald Griffin

AbstractA powerful tool to improve tissue integration with biomaterial scaffolds for the regeneration of damaged tissues is to promote cell migration using chemotactic gradients of growth factors. This approach has been realized by the exogenous delivery of growth factors, which unfortunately also limits the scaffold’s ability to meet each wound’s unique spatial and temporal regenerative needs. To address this limitation, we present a new approach to gradient generation by incorporating heparin microislands, which are spatially isolated heparin-containing microparticles that create chemotactic microgradients through reorganization of endogenous local growth factors. We incorporated heparin microislands within microporous annealed particle (MAP) scaffolds, which allows us to tune their incorporation ratiometrically to create a heterogenous microenvironment. In this manuscript, we demonstrate the ability of heparin microislands to organize uniform growth factors into spontaneous microgradients and control downstream cell migration in vitro. Further, we present their ability to significantly improve wound healing outcomes (epidermal regeneration and vascularization) in a diabetic wound model relative to two clinically relevant controls.


2018 ◽  
Vol 29 (19) ◽  
pp. 2292-2302 ◽  
Author(s):  
Youngbin Cho ◽  
Minjeong Son ◽  
Hyuntae Jeong ◽  
Jennifer H. Shin

During wound healing, cells migrate with electrotactic bias as a collective entity. Unlike the case of the electric field (EF)-induced single-cell migration, the sensitivity of electrotactic response of the monolayer depends primarily on the integrity of the cell–cell junctions. Although there exist biochemical clues on how cells sense the EF, a well-defined physical portrait to illustrate how collective cells respond to directional EF remains elusive. Here, we developed an EF stimulating system integrated with a hydrogel-based traction measurement platform to quantify the EF-induced changes in cellular tractions, from which the complete in-plane intercellular stress tensor can be calculated. We chose immortalized human keratinocytes, HaCaT, as our model cells to investigate the role of EF in epithelial migration during wound healing. Immediately after the onset of EF (0.5 V/cm), the HaCaT monolayer migrated toward anode with ordered directedness and enhanced speed as early as 15 min. Cellular traction and intercellular stresses were gradually aligned perpendicular to the direction of the EF until 50 min. The EF-­induced reorientation of physical stresses was then followed by the delayed cell-body reorientation in the direction perpendicular to the EF. Once the intercellular stresses were aligned, the reversal of the EF direction redirected the reversed migration of the cells without any apparent disruption of the intercellular stresses. The results suggest that the dislodging of the physical stress alignment along the adjacent cells should not be necessary for changing the direction of the monolayer migration.


Sign in / Sign up

Export Citation Format

Share Document