scholarly journals Patterns of allele frequency differences among domestic cat breeds assessed by a 63K SNP array

PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0247092
Author(s):  
Hasan Alhaddad ◽  
Mona Abdi ◽  
Leslie A. Lyons

Cats are ubiquitous companion animals that have been keenly associated with humans for thousands of years and only recently have been intentionally bred for aesthetically appealing coat looks and body forms. The intense selection on single gene phenotypes and the various breeding histories of cat breeds have left different marks on the genomes. Using a previously published 63K Feline SNP array dataset of twenty-six cat breeds, this study utilized a genetic differentiation-based method (di) to empirically identify candidate regions under selection. Defined as three or more overlapping (500Kb) windows of high levels of population differentiation, we identified a total of 205 candidate regions under selection across cat breeds with an average of 6 candidate regions per breed and an average size of 1.5 Mb per candidate region. Using the combined size of candidate regions of each breed, we conservatively estimate that a minimum of ~ 0.1–0.7% of the autosomal genome is potentially under selection in cats. As positive controls and tests of our methodology, we explored the candidate regions of known breed-defining genes (e.g., FGF5 for longhaired breeds) and we were able to detect the genes within candidate regions, each in its corresponding breed. For breed specific exploration of candidate regions under selection, eleven representative candidate regions were found to encompass potential candidate genes for several phenotypes such as brachycephaly of Persian (DLX6, DLX5, DLX2), curled ears of American Curl (MCRIP2, PBX1), and body-form of Siamese and Oriental (ADGRD1), which encourages further molecular investigations. The current assessment of the candidate regions under selection is empiric and detailed analyses are needed to rigorously disentangle effects of demography and population structure from artificial selection.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Aakriti Verma ◽  
M. Niranjana ◽  
S. K. Jha ◽  
Niharika Mallick ◽  
Priyanka Agarwal ◽  
...  

Abstract Leaf rolling is an important mechanism to mitigate the effects of moisture stress in several plant species. In the present study, a set of 92 wheat recombinant inbred lines derived from the cross between NI5439 × HD2012 were used to identify QTLs associated with leaf rolling under moisture stress condition. Linkage map was constructed using Axiom 35 K Breeder’s SNP Array and microsatellite (SSR) markers. A linkage map with 3661 markers comprising 3589 SNP and 72 SSR markers spanning 22,275.01 cM in length across 21 wheat chromosomes was constructed. QTL analysis for leaf rolling trait under moisture stress condition revealed 12 QTLs on chromosomes 1B, 2A, 2B, 2D, 3A, 4A, 4B, 5D, and 6B. A stable QTL Qlr.nhv-5D.2 was identified on 5D chromosome flanked by SNP marker interval AX-94892575–AX-95124447 (5D:338665301–5D:410952987). Genetic and physical map integration in the confidence intervals of Qlr.nhv-5D.2 revealed 14 putative candidate genes for drought tolerance which was narrowed down to six genes based on in-silico analysis. Comparative study of leaf rolling genes in rice viz., NRL1, OsZHD1, Roc5, and OsHB3 on wheat genome revealed five genes on chromosome 5D. Out of the identified genes, TraesCS5D02G253100 falls exactly in the QTL Qlr.nhv-5D.2 interval and showed 96.9% identity with OsZHD1. Two genes similar to OsHB3 viz. TraesCS5D02G052300 and TraesCS5D02G385300 exhibiting 85.6% and 91.8% identity; one gene TraesCS5D02G320600 having 83.9% identity with Roc5 gene; and one gene TraesCS5D02G102600 showing 100% identity with NRL1 gene were also identified, however, these genes are located outside Qlr.nhv-5D.2 interval. Hence, TraesCS5D02G253100 could be the best potential candidate gene for leaf rolling and can be utilized for improving drought tolerance in wheat.


Vaccines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 772
Author(s):  
Anna Michelitsch ◽  
Donata Hoffmann ◽  
Kerstin Wernike ◽  
Martin Beer

Domestic cats (Felis catus) are popular companion animals that live in close contact with their human owners. Therefore, the risk of a trans-species spreading event between domestic cats and humans is ever-present. Shortly after the emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its rapid spread around the world, the role of domestic cats in the transmission cycle was questioned. In the present study, the first large-scale survey of antibody occurrence in the domestic cat population in Germany was conducted, in order to assess the incidence of naturally occurring human to cat transmission of SARS-CoV-2. A total of 920 serum samples, which were collected from April to September of 2020, were screened by an indirect multispecies ELISA. Positive samples were verified using an indirect immunofluorescence test (iIFT) and additionally tested for neutralizing antibodies. Furthermore, serum samples were screened for antibodies against feline coronavirus (FCoV), in order to rule out cross-reactivity in the described test systems. Overall, 0.69% (6/920) of serum samples were found to be positive for antibodies against SARS-CoV-2 by ELISA and iIFT. Two of these reactive sera also displayed neutralizing antibodies. No cross-reactivity with FCoV-specific antibodies was observed. The finding of SARS-CoV-2 antibody-positive serum samples in the domestic cat population of Germany, during a period when the incidence of human infection in the country was still rather low, indicates that human-to-cat transmission of SARS-CoV-2 happens, but there is no indication of SARS-CoV-2 circulation in cats.


Author(s):  
Wenhao Wang ◽  
Mingxin Jiang ◽  
Xiaobing Chen ◽  
Li Hua ◽  
Shangbing Gao

In the original compression tracking algorithm, the size of the tracking box is fixed. There should be better tracking results for scale-invariant objects, but worse tracking results for scale-variant objects. To overcome this defect, a scale-adaptive compressive tracking (CT) algorithm is proposed. First of all, the imbalance of the gray and texture features in the original CT algorithm is balanced by the multi-feature method, which makes the algorithm more robust. Then, searching different candidate regions by using the method of multi-scale search along with feature normalization makes the features extracted from different scales comparable. Finally, the candidate region with the maximum discriminate degree is selected as the object region. Thus, the tracking-box size is adaptive. The experimental results show that when the object scale changes, the improving CT algorithm has higher accuracy and robustness than the original CT algorithm.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2430-2430
Author(s):  
Saskia Langemeijer ◽  
Roland Kuiper ◽  
Peter Vandenberghe ◽  
Estelle Verburgh ◽  
Jan Boezeman ◽  
...  

Abstract Conventional cytogenetics and FISH reveal chromosomal defects in approximately 50% of MDS patients. These mostly consist of gross gains and losses of specific chromosomal regions or entire chromosomes like 5q-, monosomy 7 and trisomy 8. Currently, the genes that are critical for MDS development remain largely unknown, which hampers both a proper diagnosis of clonal disease as well as development of targeted therapy. To identify the affected genetic loci and to map the critical regions and genes in MDS, we performed high-resolution (250k) SNP-based CGH. So far, 231 controls and 87 MDS patients from various subclasses were analyzed. In all patients and controls, loss of heterozygosity (LOH) without copy number changes was observed at multiple loci across the entire genome. Although large areas of LOH encompassing the main part of the p- or q-arm of chromosomes were only seen in MDS patients, no genomic regions were identified that were statistically more often affected in patients compared to control DNA. Copy number changes (excluding known regions of normal variation) were seen in 53% of patients with a normal karyotype (n=54). In 231 controls and in non-malignant T cells of a subset of patients, these areas were not affected, indicating that they were disease-specific. The number of affected regions per patient ranged from 0–7. The majority (82%) of karyotypic aberrations were confirmed using SNP-arrays. Only balanced translocations and some subclonal aberrations could not be detected. Importantly, SNP-array analysis revealed additional copy number changes in 70% of patients with an abnormal karyotype. Copy number changes that were observed in only one patient might reflect general genomic instability in the tumor cells and may not represent genes that are implicated in the pathogenesis of MDS. Therefore, we selected areas that were affected in at least two patients. In total, we found 51 different recurrent genomic loci. This indicates that MDS is genetically diverse, which is in agreement with its diverse clinical and morphological presentation. Among the 51 recurrent loci, 15 contained only a single gene (Table). Among these genes, there were several known to be implicated in MDS (e.g. ETV6 and RUNX1), whereas others represent novel genes that are potentially implicated in the pathogenesis of MDS. For several of these, a biological function has been described that may be linked to control of differentiation and proliferation, like the transcription- and proliferation-regulating gene JARID2 and the transcription factor DMTF1. Currently, we are performing a high thoughput mutation- and expression-analysis of these genes in a larger group of patients. Single gene copy number changes in MDS Chr Cytoband Loss/Gain Cases Size (Mb) Gene 1 p35.1 loss 2 0.01 CSMD2 3 p24.2 loss 2 0.07 LRRC3B 6 p22.3 loss 3 0.02 JARID2 8 p23.2-1 gain 2 0.14 MCPH1 9 p13.2 gain 2 0.23 MELK 9 p24.3 gain 2 1.14 SMARCA2 11 q22.3 gain 2 0.05 SLC35F2 12 p12.1 loss 3 0.08 ST8SIA1 12 p13.2 loss 4 0.08 ETV6 12 q23.2 loss 2 0.03 IGF1 16 q23.3 loss 2 0.06 MPHOSPH6 21 q22.12 loss 3 0.07 RUNX1 21 q22.2 gain 2 0.62 DSCAM 22 q12.2 gain 2 0.00 PES1 X q13.1 loss 2 0.17 EDA


2016 ◽  
Vol 50 (6) ◽  
pp. 589-594 ◽  
Author(s):  
Chiara O. Navarra ◽  
Antonietta Robino ◽  
Nicola Pirastu ◽  
Lorenzo Bevilacqua ◽  
Paolo Gasparini ◽  
...  

Background: The DEFB1 gene, encoding for the constitutively expressed human β-defensin 1 (hBD1) antimicrobial peptide is a potential candidate when studying genetic susceptibility to caries. DEFB1 genetic variations have been reported as contributing to hBD1 production impairment, leading to a greater susceptibility to be infected by oral pathogens, also leading to periodontitis. Methods: We analysed 5 DEFB1 polymorphisms, namely 3 functional single-nucleotide polymorphisms (SNPs) at the 5′-untranslated region (UTR), -52G>A (rs1799946), -44C>G (rs1800972), and -20G>A (rs11362), 2 SNPs at the 3′-UTR, c*5G>A (rs1047031) and c*87A>G (rs1800971) SNP located in potential miRNA binding sites, looking for possible correlations with the risk to develop caries in 654 adult subjects from isolated populations of north-eastern Italy. Dental caries prevalence was evaluated with the DMFT (decayed, missing, filled teeth) index, calculated after an accurate oral examination. DEFB1 SNP genotyping was performed with an Illumina 370k high-density SNP array. Results: Two DEFB1 SNPs were significantly associated with the DMFT index: the strongest association emerged from rs11362 SNP (p = 0.008). In particular G/G homozygous individuals showed a higher DMFT index compared to both G/A heterozygous and A/A homozygous individuals; rs1799946 SNP was also significantly associated with DMFT (p = 0.030), and individuals homozygous for the T allele had a higher DMFT value compared to heterozygous C/T and homozygous C/C individuals. Conclusions: Our study replicated, on a larger number of individuals, previous findings showing the association between two 5′-UTR SNPs in the DEFB1 gene and DMFT, suggesting that these polymorphisms could be considered as potential markers for assessing the risk to develop caries.


2021 ◽  
Vol 12 ◽  
Author(s):  
Felipe S. Kaibara ◽  
Tânia K. de Araujo ◽  
Patricia A. O. R. A. Araujo ◽  
Marina K. M. Alvim ◽  
Clarissa L. Yasuda ◽  
...  

Genetic generalized epilepsies (GGEs) include well-established epilepsy syndromes with generalized onset seizures: childhood absence epilepsy, juvenile myoclonic epilepsy (JME), juvenile absence epilepsy (JAE), myoclonic absence epilepsy, epilepsy with eyelid myoclonia (Jeavons syndrome), generalized tonic–clonic seizures, and generalized tonic–clonic seizures alone. Genome-wide association studies (GWASs) and exome sequencing have identified 48 single-nucleotide polymorphisms (SNPs) associated with GGE. However, these studies were mainly based on non-admixed, European, and Asian populations. Thus, it remains unclear whether these results apply to patients of other origins. This study aims to evaluate whether these previous results could be replicated in a cohort of admixed Brazilian patients with GGE. We obtained SNP-array data from 87 patients with GGE, compared with 340 controls from the BIPMed public dataset. We could directly access genotypes of 17 candidate SNPs, available in the SNP array, and the remaining 31 SNPs were imputed using the BEAGLE v5.1 software. We performed an association test by logistic regression analysis, including the first five principal components as covariates. Furthermore, to expand the analysis of the candidate regions, we also interrogated 14,047 SNPs that flank the candidate SNPs (1 Mb). The statistical power was evaluated in terms of odds ratio and minor allele frequency (MAF) by the genpwr package. Differences in SNP frequencies between Brazilian and Europeans, sub-Saharan African, and Native Americans were evaluated by a two-proportion Z-test. We identified nine flanking SNPs, located on eight candidate regions, which presented association signals that passed the Bonferroni correction (rs12726617; rs9428842; rs1915992; rs1464634; rs6459526; rs2510087; rs9551042; rs9888879; and rs8133217; p-values <3.55e–06). In addition, the two-proportion Z-test indicates that the lack of association of the remaining candidate SNPs could be due to different genomic backgrounds observed in admixed Brazilians. This is the first time that candidate SNPs for GGE are analyzed in an admixed Brazilian population, and we could successfully replicate the association signals in eight candidate regions. In addition, our results provide new insights on how we can account for population structure to improve risk stratification estimation in admixed individuals.


2020 ◽  
Author(s):  
Guoyao Zhao ◽  
Tianliu Zhang ◽  
Yuqiang Liu ◽  
Zezhao Wang ◽  
Lei Xu ◽  
...  

Abstract Background: Runs of homozygosity (ROH) are continuous homozygous regions that generally exist in the DNA sequence of diploid organisms. Identifications of regions of the genome lead to reduction in performance can provide valuable insight into the genetic architecture of complex traits. Here, we evaluated genome-wide patterns of homozygosity and their association with growth traits in a commercial beef cattle population.Results: We identified a total of 29,271 ROH segments with an average number of 63.36 and an average length of 0.98 Mb in this commercial beef cattle population, representing ~2.53% (~63.36Mb) of the genome. To evaluate the enrichment of ROH across genomes, we initially identified 280 ROH regions by merging ROH events identified across all individuals. Of these, nine regions were significantly associated with six growth phenotype traits (body height, chest circumference, fat coverage, backfat thickness, ribeye area, carcass length; P<0.01), which contain 187 candidate genes. Furthermore, we found 26 consensus ROH regions with frequencies exceeding 10%, and several of these consensus overlapped with QTLs which are associated with weight gain, calving difficulty and stillbirth. To precisely locate locus within each ROH for every studied trait, we further utilized loci-based methods for association analysis among these identified regions. Totally, we obtained 9,360 loci within ROH, and 1,631 loci displaying significant association (P<0.01) for eight traits. In addition, we found that 67 genes embedded with homozygous loci. Several identified candidate genes, including EBF2, SLC20A2, SH3BGRL2, HMGA1 and ACSL1, were related to growth traits.Conclusions: This study assessed genome-wide autozygosity pattern and inbreeding level in a commercial beef cattle population. Our study identified many candidate regions and genes with ROH for growth traits in beef cattle, which can provide important insights into investigating homozygosity across genome in other farm animals. Our findings may further be unitized to assist the design of selection mating strategy.


Author(s):  
Jianying Yuan ◽  
Jiajia Liu

Substation patrol robots (SIR) play an increasingly important role in ensuring the safe operation of substations. The robust and precise position estimating of the instruments to be inspected on the images are a prerequisite for accurately detecting the target states or obtaining the target readings under all-weather environment. In order to achieve high location accuracy of instrument, this study proposed an improved kernelized correlation filter (KCF) algorithm for achieving robust instrument location on images for SPR. Firstly, multiple templates are selected for training KCF classifier parameters. Then, reliable SURF matching-point determination method is designed, and the regions including reliable matching points are selected as the candidate regions, so that the searching range is narrowed. Finally, for KCF response surface of each candidate region, Single-Peak Constraint (SPC) is designed for locating target and reducing mismatching rate. Furthermore, experiments are performed for validating the effectiveness of the proposed algorithm, in which four instruments mainly including lightning arrester monitor and transformer thermometer are selected. The experimental results show that the proposed method has higher accuracy of target localization than traditional SURF-based position estimating method.


Genes ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 384 ◽  
Author(s):  
Syed Ali Azmal ◽  
Ali Akbar Bhuiyan ◽  
Abdullah Ibne Omar ◽  
Shuai Ma ◽  
Chenghao Sun ◽  
...  

The improvement of egg production is of vital importance in the chicken industry to maintain optimum output throughout the laying period. Because of the elongation of the egg-laying cycle, a drop in egg-laying rates in the late laying period has provoked great concern in the poultry industry. In this study, we calculated the egg-laying rate at weeks 61–69 (60 days) of Jing Hong chickens parent generation as the phenotype, and the genotype were detected by the chicken 600K Affymetrix Axiom High Density (HD) Single Nucleotide Polymorphisms (SNP)-array. The Genome-Wide Association Study (GWAS) result showed that the egg production trait is significantly associated with five SNPs (AX-75745366, AX-75745380, AX-75745340, AX-75745388, and AX-75745341), which are in the rap guanine nucleotide exchange factor 6 (RAPGEF6) gene on chicken chromosome 13. A total of 1676 Chinese commercial Jing Hong laying hens—including two populations, P1 population (858 hens) and P2 population (818 hens)—were genotyped using the Polymerase Chain Reaction-Restriction Fragments Length Polymorphisms (PCR-RFLP) method for the association analysis of egg-laying rates for the verification of the GWAS results. Genotypic and allelic frequencies of five SNPs were inconsistent with Hardy–Weinberg equilibrium, and the average population genetics parameters considering all the SNP values; i.e., gene homozygosity (Ho), gene heterozygosity (He), the effective number of alleles (Ne), and the polymorphism information content (PIC) were 0.75, 0.25, 1.40, and 0.20 in P1; 0.71, 0.29, 1.46, and 0.24 in P2; and 0.73, 0.27, 1.43, and 0.22 in P1 + P2 populations, respectively. The association analysis results revealed that out of the five polymorphisms, three of them (AX-75745366, AX-75745340, and AX-75745341; Patent applying No: 201810428916.5) had highly significant effects on egg-laying rates according to the GWAS results. Population-specific association analyses also showed similar significant association effects with this trait. Four haplotypes (AAGG, AAAG, AGGG, and AGAG) were inferred based on significant loci (AX-75745340 and AX-75745341) and also showed significant associations with the egg-laying rate, where haplotype AAGG had the highest egg-laying rate, with the exception of the egg-laying rate in P1 population, followed by other haplotypes. Furthermore, genotypes TT, AA, and GG showed the highest egg-laying rate compared to the corresponding genotypes at AX-75745366, AX-75745340, and AX-75745341 SNP loci in P1+P2, respectively. A similar result was found in the population-specific analysis except for the P1 population, in which TC genotype showed the highest egg-laying rate. No significant association was found in the egg-laying rate during the 60 days laying period for the SNPs (AX-75745380 and AX-75745388) in any group of population (p ≥ 0.05). Collectively, we report for the first time that 3 SNPs in the RAPGEF6 gene were significantly associated with the egg-laying rate during the later stage of egg production, which could be used as the potential candidate molecular genetic markers that would be able to facilitate in the selection and improvement of egg production traits through chicken breeding.


2010 ◽  
Vol 2010 ◽  
pp. 1-4 ◽  
Author(s):  
Nadia Bayou ◽  
Ahlem Belhadj ◽  
Hussein Daoud ◽  
Sylvain Briault ◽  
M. Bechir Helayem ◽  
...  

A high incidence of de novo chromosomal aberrations in a population of persons with autism suggests a causal relationship between certain chromosomal aberrations and the occurrence of autism. A previous study on a Tunisian boy carrying a t(7;16) translocation identified the 7p22.1 as a positional candidate region for autism on chromosome 7. The characterization of the chromosomal breakpoints helped us to identify new candidate regions on chromosome 16p11.2 which contain no known genes and the other one on 7p22.1 containing a portion of genes (NP 976327.1, RBAK, Q6NUR6 also called RNF216L and MMD2). We proposed Q6NUR6 (RNF216L) as a candidate gene for autism due to its vicinity to the translocation breakpoint on the chromosome derivative 7. Q6NUR6 is predicted to be an E3ubiquitin-ligase. Quantitative PCR demonstrates that Q6NUR6 gene has an ubiquitous expression and that it is strongly expressed in fetal and adult brain. The Q6NUR6 expression is increased in the patient blood cells in comparison to controls. This is the first report of Q6NUR6 gene (E3 ubiquitin ligase TRIAD3 EC 6.3.2) increasing blood levels in a patient with autism. It's probably caused by a position effect involving this gene and modifying its expression.


Sign in / Sign up

Export Citation Format

Share Document