scholarly journals MR. Estimator, a toolbox to determine intrinsic timescales from subsampled spiking activity

PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249447
Author(s):  
F. P. Spitzner ◽  
J. Dehning ◽  
J. Wilting ◽  
A. Hagemann ◽  
J. P. Neto ◽  
...  

Here we present our Python toolbox “MR. Estimator” to reliably estimate the intrinsic timescale from electrophysiologal recordings of heavily subsampled systems. Originally intended for the analysis of time series from neuronal spiking activity, our toolbox is applicable to a wide range of systems where subsampling—the difficulty to observe the whole system in full detail—limits our capability to record. Applications range from epidemic spreading to any system that can be represented by an autoregressive process. In the context of neuroscience, the intrinsic timescale can be thought of as the duration over which any perturbation reverberates within the network; it has been used as a key observable to investigate a functional hierarchy across the primate cortex and serves as a measure of working memory. It is also a proxy for the distance to criticality and quantifies a system’s dynamic working point.

1998 ◽  
Vol 2 ◽  
pp. 141-148
Author(s):  
J. Ulbikas ◽  
A. Čenys ◽  
D. Žemaitytė ◽  
G. Varoneckas

Variety of methods of nonlinear dynamics have been used for possibility of an analysis of time series in experimental physiology. Dynamical nature of experimental data was checked using specific methods. Statistical properties of the heart rate have been investigated. Correlation between of cardiovascular function and statistical properties of both, heart rate and stroke volume, have been analyzed. Possibility to use a data from correlations in heart rate for monitoring of cardiovascular function was discussed.


1999 ◽  
Vol 4 ◽  
pp. 87-96 ◽  
Author(s):  
B. Kaulakys ◽  
T. Meškauskas

Simple analytically solvable model exhibiting 1/f spectrum in any desirably wide range of frequency is analysed. The model consists of pulses (point process) whose interevent times obey an autoregressive process with small damping. Analysis and generalizations of the model indicate to the possible origin of 1/f noise, i.e. random increments between the occurrence times of particles or pulses resulting in the clustering of the pulses.


1984 ◽  
Vol 30 (104) ◽  
pp. 66-76 ◽  
Author(s):  
Paul A. Mayewski ◽  
W. Berry Lyons ◽  
N. Ahmad ◽  
Gordon Smith ◽  
M. Pourchet

AbstractSpectral analysis of time series of a c. 17 ± 0.3 year core, calibrated for total ß activity recovered from Sentik Glacier (4908m) Ladakh, Himalaya, yields several recognizable periodicities including subannual, annual, and multi-annual. The time-series, include both chemical data (chloride, sodium, reactive iron, reactive silicate, reactive phosphate, ammonium, δD, δ(18O) and pH) and physical data (density, debris and ice-band locations, and microparticles in size grades 0.50 to 12.70 μm). Source areas for chemical species investigated and general air-mass circulation defined from chemical and physical time-series are discussed to demonstrate the potential of such studies in the development of paleometeorological data sets from remote high-alpine glacierized sites such as the Himalaya.


2021 ◽  
Vol 13 (16) ◽  
pp. 3069
Author(s):  
Yadong Liu ◽  
Junhwan Kim ◽  
David H. Fleisher ◽  
Kwang Soo Kim

Seasonal forecasts of crop yield are important components for agricultural policy decisions and farmer planning. A wide range of input data are often needed to forecast crop yield in a region where sophisticated approaches such as machine learning and process-based models are used. This requires considerable effort for data preparation in addition to identifying data sources. Here, we propose a simpler approach called the Analogy Based Crop-yield (ABC) forecast scheme to make timely and accurate prediction of regional crop yield using a minimum set of inputs. In the ABC method, a growing season from a prior long-term period, e.g., 10 years, is first identified as analogous to the current season by the use of a similarity index based on the time series leaf area index (LAI) patterns. Crop yield in the given growing season is then forecasted using the weighted yield average reported in the analogous seasons for the area of interest. The ABC approach was used to predict corn and soybean yields in the Midwestern U.S. at the county level for the period of 2017–2019. The MOD15A2H, which is a satellite data product for LAI, was used to compile inputs. The mean absolute percentage error (MAPE) of crop yield forecasts was <10% for corn and soybean in each growing season when the time series of LAI from the day of year 89 to 209 was used as inputs to the ABC approach. The prediction error for the ABC approach was comparable to results from a deep neural network model that relied on soil and weather data as well as satellite data in a previous study. These results indicate that the ABC approach allowed for crop yield forecast with a lead-time of at least two months before harvest. In particular, the ABC scheme would be useful for regions where crop yield forecasts are limited by availability of reliable environmental data.


Author(s):  
Simi Prakash K. ◽  
Rajakumari P. Reddy ◽  
Anna R. Mathulla ◽  
Jamuna Rajeswaran ◽  
Dhaval P. Shukla

AbstractTraumatic brain injury (TBI) is associated with a wide range of physiological, behavioral, emotional, and cognitive sequelae. Litigation status is one of the many factors that has an impact on recovery. The aim of this study was to compare executive functions, postconcussion, and depressive symptoms in TBI patients with and without litigation. A sample of 30 patients with TBI, 15 patients with litigation (medicolegal case [MLC]), and 15 without litigation (non-MLC) was assessed. The tools used were sociodemographic and clinical proforma, executive function tests, Rivermead Post-Concussion Symptom Questionnaire, and Beck Depression Inventory. Assessment revealed that more than 50% of patients showed deficits in category fluency, set shifting, and concept formation. The MLC group showed significant impairment on verbal working memory in comparison to the non-MLC group. The performance of both groups was comparable on tests of semantic fluency, visuospatial working memory, concept formation, set shifting, planning, and response inhibition. The MLC group showed more verbal working memory deficits in the absence of significant postconcussion and depressive symptoms on self-report measures.


2019 ◽  
Vol 12 (11) ◽  
pp. 4661-4679 ◽  
Author(s):  
Bin Cao ◽  
Xiaojing Quan ◽  
Nicholas Brown ◽  
Emilie Stewart-Jones ◽  
Stephan Gruber

Abstract. Simulations of land-surface processes and phenomena often require driving time series of meteorological variables. Corresponding observations, however, are unavailable in most locations, even more so, when considering the duration, continuity and data quality required. Atmospheric reanalyses provide global coverage of relevant meteorological variables, but their use is largely restricted to grid-based studies. This is because technical challenges limit the ease with which reanalysis data can be applied to models at the site scale. We present the software toolkit GlobSim, which automates the downloading, interpolation and scaling of different reanalyses – currently ERA5, ERA-Interim, JRA-55 and MERRA-2 – to produce meteorological time series for user-defined point locations. The resulting data have consistent structure and units to efficiently support ensemble simulation. The utility of GlobSim is demonstrated using an application in permafrost research. We perform ensemble simulations of ground-surface temperature for 10 terrain types in a remote tundra area in northern Canada and compare the results with observations. Simulation results reproduced seasonal cycles and variation between terrain types well, demonstrating that GlobSim can support efficient land-surface simulations. Ensemble means often yielded better accuracy than individual simulations and ensemble ranges additionally provide indications of uncertainty arising from uncertain input. By improving the usability of reanalyses for research requiring time series of climate variables for point locations, GlobSim can enable a wide range of simulation studies and model evaluations that previously were impeded by technical hurdles in obtaining suitable data.


Sign in / Sign up

Export Citation Format

Share Document