scholarly journals PKA and AKIP1 interact to mediate cAMP-driven COX-2 expression: A potentially pivotal interaction in preterm and term labour

PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0252720
Author(s):  
Angela Yulia ◽  
Natasha Singh ◽  
Alice J. Varley ◽  
Kaiyu Lei ◽  
Danijela Markovic ◽  
...  

Previously, we showed that cAMP increased COX-2 expression in myometrial cells via MAPK. Here, we have extended these observations, using primary myometrial cell cultures to show that the cAMP agonist, forskolin, enhances IL-1β-driven COX-2 expression. We then explored the role of A-kinase interacting protein (AKIP1), which modulates the effect of PKA on p65 activation. AKIP1 knockdown reversed the effect of forskolin, such that its addition inhibited IL-1β-induced COX-2 mRNA expression and reduced the IL-1β-induced increase in nuclear levels of p65 and c-jun. Forskolin alone and with IL-1β increased IκBα mRNA expression suggesting that in the context of inflammation and in the presence of AKIP1, cAMP enhances p65 activation. AKIP1 knockdown reversed these changes. Interestingly, AKIP1 knockdown had minimal effect on the ability of forskolin to repress either basal OTR expression or IL-1β-stimulated OTR mRNA expression. AKIP1 was up-regulated by IL-1β, but not stretch and was repressed by cAMP. The mRNA expression of AKIP1 increased in early labour in tandem with an increase in COX-2 mRNA and protein. AKIP1 protein levels were also increased with inflammation and stretch-induced preterm labour. Our results identify a second important cAMP effector-switch occurring at term in human myometrium and suggest that a hitherto unrecognized interaction may exist between AKIP1, NFκB and AP-1. These data add to the proposition that cAMP acts as a key regulator of human myometrial contractility.

Reproduction ◽  
2009 ◽  
Vol 138 (1) ◽  
pp. 141-149 ◽  
Author(s):  
Dieter Schams ◽  
Vera Steinberg ◽  
Martin Steffl ◽  
Heinrich H D Meyer ◽  
Bajram Berisha

The aim of this study was to investigate the possible participation of fibroblast growth factor (FGF) family members (FGF1, FGF2 and FGF7 and their receptors) in porcine follicles (polyovulatory species) under special consideration for FGF2 during final growth. A classification of follicles was done by size and follicular fluid content of oestradiol-17β, progesterone and prostaglandin F2α. The mRNA expression of examined factors was analysed by real-time PCR. The hormone concentration was estimated by enzyme immunoassay, protein characterisation by western blotting and localisation by immunohistochemistry. Follicle tissue separated in theca interna and granulosa cells was extracted and tested for mRNA of FGF1, FGF2, FGF7 and receptors (FGFR1IIIc, FGFRIIIb and FGFR2IIIc). Additionally, the mRNA expression of FSHR, LHR and aromatase cytochrome P450 for further characterisation of follicles was analysed. Significantly, higher FGF2 protein levels were measured in stroma when compared with total follicle or corpus luteum tissue. This result was confirmed by western blot with two strong bands. Immunological localisation of FGF2 only in stroma (fibroblasts) confirms the protein measurements. The results show a clear difference for FGF2 protein expression during final growth of follicles if monovulatory (bovine) and polyovulatory (porcine) species are compared. FGF2 protein in porcine ovary may be (due to localisation and concentration in stroma) important for support of angiogenesis of more follicles (polyovulatory species) and not of a single follicle like in cows.


2021 ◽  
Author(s):  
Xiansheng Huang ◽  
Yiqi Zhang ◽  
Wenqiang Zhu ◽  
Piaopiao Huang ◽  
Jingmei Xiao ◽  
...  

Olanzapine, an antipsychotic drug, was reported to induce hypertriglyceridemia, whereas the underlying mechanism remains incompletely understood. This study was to determine the role of apolipoprotein A5 (apoA5) in olanzapine-induced hypertriglyceridemia. In this study, 36 drug-naive and first-episode schizophrenic adult patients (aged 18-60 years) in a multi-center clinical trial (ClinicalTrials.gov NCT03451734) were enrolled. Before and after olanzapine treatment, plasma lipid and apoA5 levels were detected. Moreover, 21 female C57BL/6 J mice (8 weeks old) were divided into 3 groups (n = 7/each group): low-dose olanzapine (3 mg/kg/day), high-dose olanzapine (6 mg/kg/day) and control group. After 6 weeks, plasma glucose, lipids and apoA5 as well as hepatic apoA5 protein and mRNA expression in these animals were detected. In our study in vitro, primary mouse hepatocytes and HepG2 cells were treated with olanzapine of 25, 50, 100 μmol/L, respectively. After 24 hours, apoA5 protein and mRNA levels in hepatocytes were detected. Our study showed that olanzapine treatment significantly increased plasma triglyceride levels and decreased plasma apoA5 levels in these schizophrenic patients. A significant negative correlation was indicated between plasma triglyceride and apoA5 levels in these patients. Consistently, olanzapine dose-dependently increased plasma triglyceride levels and decreased plasma apoA5 levels in mice. Surprisingly, an elevation of hepatic apoA5 protein levels was detected in mice after olanzapine treatment, with no changes of APOA5 mRNA expression. Likewise, olanzapine increased apoA5 protein levels in hepatocytes in vitro, without changes of hepatocyte APOA5 mRNA. Therefore, our study provides the first evidence about the role of apoA5 in olanzapine-induced hypertriglyceridemia. Furthermore, plasma apoA5 reduction, resulting in hypertriglyceridemia, could be attributed to olanzapine-induced inhibition of hepatic apoA5 secretion.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256545
Author(s):  
Natasha Singh ◽  
Bronwen Herbert ◽  
Garvin Sooranna ◽  
Nishel M. Shah ◽  
Ananya Das ◽  
...  

Inflammation is thought to play a pivotal role in the onset of term and some forms of preterm labour. Although, we recently found that myometrial inflammation is a consequence rather than a cause of term labour, there are several other reproductive tissues, including amnion, choriodecidua parietalis and decidua basalis, where the inflammatory stimulus to labour may occur. To investigate this, we have obtained amnion, choriodecidual parietalis and decidua basalis samples from women at various stages of pregnancy and spontaneous labour. The inflammatory cytokine profile in each tissue was determine by Bio-Plex Pro® cytokine multiplex assays and quantitative RT-PCR. Active motif assay was used to study transcription activation in the choriodecidua parietalis. Quantitative RT-PCR was use to study the pro-labour genes (PGHS-2, PGDH, OTR and CX43) in all of the tissues at the onset of labour and oxytocin (OT) mRNA expression in the choriodecidual parietalis and decidua basalis. Statistical significance was ascribed to a P value <0.05. In the amnion and choriodecidua parietalis, the mRNA levels of various cytokines decreased from preterm no labour to term no labour samples, but the protein levels were unchanged. The choriodecidua parietalis showed increase in the protein levels of IL-1β and IL-6 in the term early labour samples. In the amnion and decidua basalis, the protein levels of several cytokines rose in term established labour. The multiples of the median derived from the 19-plex cytokine assay were greater in term early labour and term established labour samples from the choriodecidua parietalis, but only in term established labour for myometrium. These data suggest that the inflammatory stimulus to labour may begin in the choriodecidua parietalis, but the absence of any change in prolabour factor mRNA levels suggests that the cytokines may act on the myometrium where we observed changes in transcription factor activation and increases in prolabour gene expression in earlier studies.


2021 ◽  
Author(s):  
Lingfeng Zeng ◽  
Ming Yang ◽  
Chun Hu ◽  
Li Zhao ◽  
Xianghui Chen ◽  
...  

AbstractDisulfide-bond A oxidoreductase-like protein (DsbA-L) is an adiponectin-interacting protein that is highly expressed in adipose tissue. The adipo-renal axis involves adipocyte release of signaling molecules that are recruited to kidney and regulate kidney function. We have found that the DsbA-L modulated the progression of diabetic nephropathy, but the precise mechanism of this modulation is unknown. Here, the transgenic mice overexpressing DsbA-L protein in fat (fDsbA-L) were used to verify that the renoprotective role of DsbA-L whether by adipo-renal axis. Mice were divided into four groups: a normal (Control) group, STZ induced diabetic mice, fDsbA-L mice and diabetic fDsbA-L mice (n=6). Diabetes was induced in mice by STZ 100mg/kg and continued HFD feeding for 12 weeks. Compared with the control group, the weight, blood glucose,and urine protein levels and the pathological changes in the kidney tissue of diabetic mice were increased significantly, accompanied by increased NLRP3,caspase-1, IL-1β, IL-18, FN, and Collagen1 mRNA and protein expression, which were reduced in diabetic fDsbA-L mice. Interestingly, the level of adiponectin in serum and kidney expression in diabetic mice was reduced significantly compared to that in the control group. However this change was reversed in diabetic fDsbA-L mice. These data suggest that the overexpression of DsbA-L in the adipocytes of mice can protect against diabetic renal injury through anti-inflammatory mediators,and may be mediated by the adipo-renal axis.


2021 ◽  
Author(s):  
Yongliang Tang ◽  
Daotao Xie ◽  
Wenqing Gong ◽  
Hongtao Wu ◽  
Yi Qiang

Abstract Background Rheumatoid arthritis (RA) is a chronic autoimmune disorder associated with progressive joint disability. Madhuca indica J. F. Gmel (family Sapotaceae) is an Indian medicinal plant reported to have an array of pharmacological properties. Objective To evaluate the anti-arthritic activity of isolated phytoconstituent from methanolic extract of Madhuca indica Leaves (MI-ALC) and its possible mechanism of action in FCA induced experimental arthritis. Materials and methods Polyarthritis was induced in female Wistar rats by intradermal administration of FCA (0.1 ml) into the tail. Polyarthritis was allowed to develop for the next 32 days. Then rats were treated with isolated phytoconstituent from MI-ALC (5, 10, and 20 mg/kg, p.o.) Results HPTLC, FTIR, and LC-MS spectral analysis of phytoconstituent isolated from MI-ALC confirmed the structure as 3,5,7,3′,4′- Pentahydroxy flavone (i.e., QTN). Treatment with QTN (10 and 20 mg/kg) showed significant inhibition (p < 0.05) in FCA-induced increased paw volume, joint diameter, paw withdrawal threshold, and latency. The elevated synovial oxido-nitrosative stress and protein levels of TNF-α, IL-1β, and IL-6 were significantly reduced (p < 0.05)by QTN. Western blot analysis revealed QNT significantly ameliorated (p < 0.05) up-regulated NF-kβ, Ikβα, COX-2, and P2X7 protein expressions. Conclusion QTN ameliorates FCA-induced hyperalgesia via inhibition of elevated oxido-nitrosative stress, inflammatory mediators (NF-kβ, Ikβα, COX-2, and P2X7), and pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) in experimental rats.


2019 ◽  
Vol 9 (5) ◽  
pp. 637-645
Author(s):  
Lei Wang ◽  
Qi Hu ◽  
Feng Gu

Background: Long noncoding RNAs (lncRNAs) have been consistently demonstrated to be involved in gastric cancer (GC) as either tumor oncogenes or tumor suppressors. However, the detailed role of MIAT in GC remains poorly understood. Methods: The expression of MIAT in GC tissues was measured by In situ hybridization (ISH) assay. Cell proliferation, apoptosis, cycle, migration and invasion assays were performed to analyze the biological functions of MIAT in GC cells. Besides, western blotting was used to evaluate the role of MIAT in the expressions of P16, COX-2 and MMP-9. Results: In the present study, we identified that MIAT was up-regulated in GC tissues. Furthermore, silencing MIAT significantly suppressed GC cells proliferation, migration and invasion, promoted GC cells apoptosis, and induced GC cells cycle arrest in G1 phase. Additionally, knockdown of MIAT notably up-regulated the protein level of P16 and down-regulated the protein levels of COX-2 and MMP-9. Conclusion: These observations imply that silencing MIAT inhibits the proliferation, migration and invasion, promotes apoptosis, and induces cell arrest in G1 phase, partially through up-regulating the expression level of P16 and down-regulating the expression levels of COX-2 and MMP-9, indicating that MIAT may a novel biomarker and therapeutic target for GC.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Enid E. Martinez ◽  
Jinggang Lan ◽  
Takumi Konno ◽  
Alba Miranda-Ribera ◽  
Maria Fiorentino ◽  
...  

AbstractWe examined the relationship between zonulin and gastric motility in critical care patients and a translational mouse model of systemic inflammation. Gastric motility and haptoglobin (HP) 2 isoform quantification, proxy for zonulin, were examined in patients. Inflammation was triggered by lipopolysaccharide (LPS) injection in C57Bl/6 zonulin transgenic mouse (Ztm) and wildtype (WT) mice as controls, and gastro-duodenal transit was examined by fluorescein-isothiocyanate, 6 and 12 h after LPS-injection. Serum cytokines and zonulin protein levels, and zonulin gastric-duodenal mRNA expression were examined. Eight of 20 patients [14 years, IQR (12.25, 18)] developed gastric dysmotility and were HP2 isoform-producing. HP2 correlated with gastric dysmotility (r = − 0.51, CI − 0.81 to 0.003, p = 0.048). LPS injection induced a time-dependent increase in IL-6 and KC-Gro levels in all mice (p < 0.0001). Gastric dysmotility was reduced similarly in Ztm and WT mice in a time-dependent manner. Ztm had 16% faster duodenal motility than WT mice 6H post-LPS, p = 0.01. Zonulin mRNA expression by delta cycle threshold (dCT) was higher in the stomach (9.7, SD 1.4) than the duodenum (13.9, SD 1.4) 6H post-LPS, p = 0.04. Serum zonulin protein levels were higher in LPS-injected mice compared to vehicle-injected animals in a time-dependent manner. Zonulin correlated with gastric dysmotility in patients. A mouse model had time-dependent gastro-duodenal dysmotility after LPS-injection that paralleled zonulin mRNA expression and protein levels.


2006 ◽  
Vol 18 (2) ◽  
pp. 235
Author(s):  
S.-E. Lee ◽  
X.-Y. Li ◽  
X.-S. Cui ◽  
N.-H. Kim

Despite clear evidence of regulation of mitochondrial respiration by nuclear encoded genes, cytochrome oxidase (Cox), little information is available on their expression and functional roles during early embryonic development. To examine the role of Cox in oocyte maturation and embryogenesis, we first characterized mRNA and protein levels of nuclear encoded genes, Cox 5a, 5b, and 6b1, in mouse oocytes and during early embryogenesis, using real-time RT-PCR and immunocytochemistry. We then examined the possible role of these genes in oocyte maturation and pre-implantation development using RNA interference analysis. The relative abundances of Cox 5a, 5b, and 6b1 transcripts was measured by real time RT-PCR. After normalization by comparison to histone H2a mRNA levels, the mRNA expression of Cox 5a, 5b, and 6b1 were found to be considerable in mature oocytes and zygotes, but reduced slightly in 2-cell embryos. From the 2-cell to the blastocyst stage, mRNA expression is dependent on the number of blastomeres, as expression increases only gradually with development. Immunocytochemical studies revealed that Cox 5a, 5b, and 6b1 proteins were expressed in all blastomeres of the blastocyst. Injection of Cox 5a, 5b, or 6b1 siRNA into GV stage oocytes decreased expression of the target mRNA specifically, while not affecting the expression of mRNAs for the other subunits in mature oocytes. Similarly, each siRNA injection into zygotes specifically reduced target mRNA expression at the 2-cell, morula and blastocyst stages (P < 0.05). Silencing of mRNA expression by RNA interference (siRNA) did not inhibit oocyte maturation or developmental events up to the morula and blastocyst stages. The expression level of mtDNA9, as well as overall levels of mitochondrial mRNAs, was not different following injection of siRNA for Cox 5a, 5b, or 6b1. However, it is evident that the number of mitochondria in siRNA treated blastocysts was greatly reduced, and they appeared to be morphologically abnormal. Significantly higher apoptosis and lower cell numbers were observed in siRNA treated blastocysts. Real time RT PCR revealed that silencing of Cox 5a, 5b, and 6b1 decreased mRNA and protein levels of E-cadherin. These results suggest that the Cox subunits, Cox 5a, 5b, and 6b1, play an important role in mitochondrial function during pre-implantation development. This work was funded by a grant from the National Research Laboratory Program in Korea.


Endocrinology ◽  
2014 ◽  
Vol 155 (9) ◽  
pp. 3638-3648 ◽  
Author(s):  
Bin Wu ◽  
Xihua Chen ◽  
Bin He ◽  
Shuyan Liu ◽  
Yunfeng Li ◽  
...  

Abstract Progesterone withdrawal triggers endometrial breakdown and shedding during menstruation. Menstruation results from inflammatory responses; however, the role of reactive oxygen species (ROS) in menstruation remains unclear. In this study, we explored the role of ROS in endometrial breakdown and shedding. We found that ROS levels were significantly increased before endometrial breakdown in a mouse menstrual-like model. Vaginal smear inspection, morphology of uterine horns, and endometrial histology examination showed that a broad range of ROS scavengers significantly inhibited endometrial breakdown in this model. Furthermore, Western blot and immunohistochemical analysis showed that the intracellular translocation of p50 and p65 from the cytoplasm into the nucleus was blocked by ROS scavengers and real-time PCR showed that cyclooxygenase-2 (COX-2) mRNA expression was decreased by ROS scavengers. Similar changes also occurred in human stromal cells in vitro. Furthermore, Western blotting and real-time PCR showed that one ROS, hydrogen peroxide (H2O2), promoted translocation of p50 and p65 from the cytoplasm to the nucleus and increased COX-2 mRNA expression along with progesterone maintenance. The nuclear factor κB inhibitor MG132 reduced the occurrence of these changes in human stromal cells in vitro. Viewed as a whole, our results provide evidence that certain ROS are important for endometrial breakdown and shedding in a mouse menstrual-like model and function at least partially via nuclear factor-κB/COX-2 signaling. Similar changes observed in human stromal cells could also implicate ROS as important mediators of human menstruation.


Reproduction ◽  
2013 ◽  
Vol 146 (6) ◽  
pp. 581-591 ◽  
Author(s):  
Tamsin R M Lannagan ◽  
Martin R Wilson ◽  
Fiona Denison ◽  
Jane E Norman ◽  
Rob D Catalano ◽  
...  

The mechanisms that regulate the induction of term or preterm delivery (PTD) are not fully understood. Infection is known to play a role in the induction of pro-inflammatory cascades in uteroplacental tissues associated with preterm pathological parturition. Similar but not identical cascades are evident in term labour. In the current study, we used a mouse model to evaluate the role of prokineticins in term and preterm parturition. Prokineticins are multi-functioning secreted proteins that signal through G-protein-coupled receptors to induce gene expression, including genes important in inflammatory responses. Expression of prokineticins (Prok1andProk2) was quantified in murine uteroplacental tissues by QPCR in the days preceding labour (days 16–19).Prok1mRNA expression increased significantly on D18 in fetal membranes (compared with D16) but not in uterus or placenta. Intrauterine injection of PROK1 on D17 induced fetal membrane mRNA expression of the pro-inflammatory mediatorsIl6,Il1b,Tnf,Cxcl2andCxcl5, which are not normally up-regulated until D19 of pregnancy. However, intrauterine injection of PROK1 did not result in PTD. As expected, injection of lipopolysaccharide (LPS) induced PTD, but this was not associated with changes in expression ofProk1or its receptor (Prokr1) in fetal membranes. These results suggest that althoughProk1exhibits dynamic mRNA regulation in fetal membranes preceding labour and induces a pro-inflammatory response when injected into the uterus on D17, it is insufficient to induce PTD. Additionally, prokineticin up-regulation appears not to be part of the LPS-induced inflammatory response in mouse fetal membranes.


Sign in / Sign up

Export Citation Format

Share Document