scholarly journals High levels of connectivity over large distances in the diadematid sea urchin Centrostephanus sylviae

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259595
Author(s):  
David Veliz ◽  
Noemi Rojas-Hernández ◽  
Pablo Fibla ◽  
Boris Dewitte ◽  
Sebastián Cornejo-Guzmán ◽  
...  

Most benthic marine invertebrates with sedentary benthic adult phases have planktonic larvae that permit connectivity between geographically isolated populations. Planktonic larval duration and oceanographic processes are vital to connecting populations of species inhabiting remote and distant islands. In the present study, we analyzed the population genetic structure of the sea urchin Centrostephanus sylviae, which inhabits only the Juan Fernández Archipelago and the Desventuradas islands, separated by more than 800 km. For 92 individuals collected from Robinson Crusoe and Selkirk Islands (Juan Fernández Archipelago) and San Ambrosio Island (Desventuradas Islands), 7,067 single nucleotide polymorphisms (SNPs) were obtained. The results did not show a spatial genetic structure for C. sylviae; relative high migration rates were revealed between the islands. An analysis of the water circulation pattern in the area described a predominant northward water flow with periods of inverted flow, suggesting that larvae could move in both directions. Overall, this evidence suggests that C. sylviae comprises a single large population composed of individuals separated by more than 800 km.

2021 ◽  
Vol 8 ◽  
Author(s):  
Daniel Frikli Mokodongan ◽  
Hiroki Taninaka ◽  
La Sara ◽  
Taisei Kikuchi ◽  
Hideaki Yuasa ◽  
...  

Spatial autocorrelation analysis is a well-established technique for detecting spatial structures and patterns in ecology. However, compared to inter-population genetic structure, much less studies examined spatial genetic structure (SGS) within a population by means of spatial autocorrelation analysis. More SGS analysis that compares the robustness of genome-wide single nucleotide polymorphisms (SNPs) and traditional population genetic markers in detecting SGS, and direct comparison between the estimated dispersal range based on SGS and the larval dispersal range of corals directly surveyed in the field would be important. In this study, we examined the SGS of a reef-building coral species, Heliopora coerulea, in two different reefs (Shiraho and Akaishi) using genome-wide SNPs derived from Multiplexed inter-simple sequence repeat (ISSR) genotyping by sequencing (MIG-seq) analysis and nine microsatellite loci for comparison. Microsatellite data failed to reveal significant spatial patterns when using the same number of samples as MIG-seq, whereas MIG-seq analysis revealed significant spatial autocorrelation patterns up to 750 m in both Shiraho and Akaishi reefs based on the maximum significant distance method. However, detailed spatial genetic analysis using fine-scale distance classes (25–200 m) found an x-intercept of 255–392 m in Shiraho and that of 258–330 m in Akaishi reef. The latter results agreed well with a previously reported direct field observation of larval dispersal, indicating that the larvae of H. coerulea settled within a 350 m range in Shiraho reef within one generation. Overall, our results empirically demonstrate that the x-intercept of the spatial correlogram agrees well with the larval dispersal distance that is most frequently found in field observations, and they would be useful for deciding effective conservation management units for maintenance and/or recovery within an ecological time scale.


Forests ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1047
Author(s):  
Nicolae Șofletea ◽  
Georgeta Mihai ◽  
Elena Ciocîrlan ◽  
Alexandru Lucian Curtu

Small, isolated populations are more vulnerable to natural disturbances and loss of genetic diversity. Scots pine, an abundant tree species in the boreal forest of Eurasia, has a scattered natural distribution across Eastern and Southern Carpathian Mountains, where only a few relict populations still exist. We estimated genetic diversity and spatial genetic structure in Scots pine on the basis of microsatellite nuclear markers (nSSR) data. We found a relatively high level of genetic diversity (He = 0.697) within populations and no evidence of recent bottlenecks. Genetic diversity was lower in peat bog populations, as compared to populations that grow on rocky slopes or acidic soils and nutrient-poor sites. Population genetic structure was weak, and genetic discontinuities among populations were detected. Spatial genetic structure (SGS) was observed in nearly all Scots pine populations. The strength of SGS, quantified by Sp statistics, varied greatly among populations, ranging from 0.0011 to 0.0207, with an average of 0.01. Our study highlights that Eastern and Southern Carpathian populations still possess high within-population diversity in spite of the recent fragmentation and reduction of the Scots pine natural distribution range. We discuss the importance of spatial patterns of genetic diversity for developing strategies of conservation and sustainable use of Scots pine genetic resources in the Carpathian region.


2019 ◽  
Author(s):  
Armel S.L. Donkpegan ◽  
Rosalía Piñeiro ◽  
Myriam Heuertz ◽  
Jérôme Duminil ◽  
Kasso Daïnou ◽  
...  

ABSTRACTFew studies have addressed the evolutionary history of tree species from African savannahs at large geographic scales, particularly in the southern hemisphere (Zambezian region). Afzelia (Fabaceae: Caesalpinioideae) contains economically important timber species, including two species widely distributed in African savannahs: A. africana in the Sudanian region and A. quanzensis in the Zambezian region. To characterize the population genetic diversity and structure of these two species across their distribution ranges, we used nuclear microsatellites (simple sequence repeats, SSRs) and genotyping-by-sequencing (GBS) markers. Six SSR loci were genotyped in 241 A. africana and 113 A. quanzensis individuals, while 2,800 and 3,841 high-quality single nucleotide polymorphisms (SNPs) were identified in 30 A. africana and 12 A. quanzensis individuals, respectively. Both species appeared to be outcrossing (selfing rate ~ 0%). The spatial genetic structure was consistent with isolation-by-distance expectations based on both SSR and SNP data, suggesting that gene dispersal is spatially restricted in both species (bLd (SSR)= −0.005 and −0.007 and bLd (SNP)= −0.008 and −0.006 for A. africana and A. quanzensis, respectively). Bayesian clustering of SSR genotypes failed to identify genetic structure within species. In contrast, SNP data resolved intraspecific genetic clusters in both species, illustrating the higher resolving power of GBS at shallow levels of divergence. However, the clusters identified by SNPs revealed low levels of differentiation and no clear geographical entities. These results suggest that, although gene flow has been restricted over short distances in both species, populations have remained connected throughout the large, continuous Savannah landscapes. The absence of clear phylogeographic discontinuities, also found in a few other African savannah trees, indicates that their distribution ranges have not been significantly fragmented during past climate changes, in contrast to patterns commonly found in African rainforest trees.


2020 ◽  
Vol 8 (9) ◽  
pp. 661
Author(s):  
Davide Asnicar ◽  
Costanza Cappelli ◽  
Ahmad Safuan Sallehuddin ◽  
Nur Atiqah Maznan ◽  
Maria Gabriella Marin

Despite the widespread use of herbicide glyphosate in cultivation, its extensive runoff into rivers and to coastal areas, and the persistence of this chemical and its main degradation product (aminomethylphosphonic acid, AMPA) in the environment, there is still little information on the potential negative effects of glyphosate, its commercial formulation Roundup® and AMPA on marine species. This study was conducted with the aim of providing a comparative evaluation of the effects of glyphosate-based and its derived chemicals on the larval development of the sea urchin Paracentrotus lividus, thus providing new data to describe the potential ecotoxicity of these contaminants. In particular, the effects on larval development, growth and metabolism were assessed during 48 h of exposure from the time of egg fertilization. The results confirm that AMPA and its parent compound, glyphosate have similar toxicity, as observed in other marine invertebrates. However, interestingly, the Roundup® formulation seemed to be less toxic than the glyphosate alone.


2019 ◽  
Vol 112 (5) ◽  
pp. 2362-2368
Author(s):  
Yan Liu ◽  
Lei Chen ◽  
Xing-Zhi Duan ◽  
Dian-Shu Zhao ◽  
Jing-Tao Sun ◽  
...  

Abstract Deciphering genetic structure and inferring migration routes of insects with high migratory ability have been challenging, due to weak genetic differentiation and limited resolution offered by traditional genotyping methods. Here, we tested the ability of double digest restriction-site associated DNA sequencing (ddRADseq)-based single nucleotide polymorphisms (SNPs) in revealing the population structure relative to 13 microsatellite markers by using four small brown planthopper populations as subjects. Using ddRADseq, we identified 230,000 RAD loci and 5,535 SNP sites, which were present in at least 80% of individuals across the four populations with a minimum sequencing depth of 10. Our results show that this large SNP panel is more powerful than traditional microsatellite markers in revealing fine-scale population structure among the small brown planthopper populations. In contrast to the mixed population structure suggested by microsatellites, discriminant analysis of principal components (DAPC) of the SNP dataset clearly separated the individuals into four geographic populations. Our results also suggest the DAPC analysis is more powerful than the principal component analysis (PCA) in resolving population genetic structure of high migratory taxa, probably due to the advantages of DAPC in using more genetic variation and the discriminant analysis function. Together, these results point to ddRADseq being a promising approach for population genetic and migration studies of small brown planthopper.


2005 ◽  
Vol 250 (3-4) ◽  
pp. 231-242 ◽  
Author(s):  
M. Y. Chung ◽  
K.-J. Kim ◽  
J.-H. Pak ◽  
C.-W. Park ◽  
B.-Y. Sun ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Florentine Riquet ◽  
Christiane-Arnilda De Kuyper ◽  
Cécile Fauvelot ◽  
Laura Airoldi ◽  
Serge Planes ◽  
...  

AbstractCystoseira sensu lato (Class Phaeophyceae, Order Fucales, Family Sargassaceae) forests play a central role in marine Mediterranean ecosystems. Over the last decades, Cystoseira s.l. suffered from a severe loss as a result of multiple anthropogenic stressors. In particular, Gongolaria barbata has faced multiple human-induced threats, and, despite its ecological importance in structuring rocky communities and hosting a large number of species, the natural recovery of G. barbata depleted populations is uncertain. Here, we used nine microsatellite loci specifically developed for G. barbata to assess the genetic diversity of this species and its genetic connectivity among fifteen sites located in the Ionian, the Adriatic and the Black Seas. In line with strong and significant heterozygosity deficiencies across loci, likely explained by Wahlund effect, high genetic structure was observed among the three seas (ENA corrected FST = 0.355, IC = [0.283, 0.440]), with an estimated dispersal distance per generation smaller than 600 m, both in the Adriatic and Black Sea. This strong genetic structure likely results from restricted gene flow driven by geographic distances and limited dispersal abilities, along with genetic drift within isolated populations. The presence of genetically disconnected populations at small spatial scales (< 10 km) has important implications for the identification of relevant conservation and management measures for G. barbata: each population should be considered as separated evolutionary units with dedicated conservation efforts.


Sign in / Sign up

Export Citation Format

Share Document