scholarly journals Effects of salt stress on the photosynthetic physiology and mineral ion absorption and distribution in white willow (Salix alba L.)

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260086
Author(s):  
Xin Ran ◽  
Xiao Wang ◽  
Xiaokuan Gao ◽  
Haiyong Liang ◽  
Bingxiang Liu ◽  
...  

Objective The purpose of this study was to explore the adaptive mechanism underlying the photosynthetic characteristics and the ion absorption and distribution of white willow (Salix alba L.) in a salt stress environment in cutting seedlings. The results lay a foundation for further understanding the distribution of sodium chloride and its effect on the photosynthetic system. Method A salt stress environment was simulated in a hydroponics system with different NaCl concentrations in one-year-old Salix alba L.branches as the test materials. Their growth, ion absorption, transport and distribution in the roots and leaves, and the changes in the photosynthetic fluorescence parameters were studied after 20 days under hydroponics. Results The results show that The germination and elongation of roots are promoted in the presence of 171mM NaCl, but root growth is comprehensively inhibited under increasing salt stress. Under salt stress, Na+ accumulates significantly in the roots and leaves, and the Na+ content and the Na+/K+ and Na+/Ca2+ root ratios are significantly greater than those in the leaves. When the NaCl concentration is ≤ 342mM, Salix alba can maintain relatively stable K+ and Ca2+ contents in its leaves by improving the selective absorption and accumulation of K+ and Ca2+ and adjusting the transport capacity of mineral ions to aboveground parts, while K+ and Ca2+ levels are clearly decreased under high salt stress. With increasing salt concentrations, the net photosynthetic rate (Pn), transpiration rate (E) and stomatal conductance (gs) of leaves decrease gradually overall, and the intercellular CO2 concentration (Ci) first decreases and then increases. When the NaCl concentration is < 342mM, the decrease in leaf Pn is primarily restricted by the stomata. When the NaCl concentration is > 342mM, the decrease in the Pn is largely inhibited by non-stomatal factors. Due to the salt stress environment, the OJIP curve (Rapid chlorophyll fluorescence) of Salix alba turns into an OKJIP curve. When the NaCl concentration is > 171mM, the fluorescence values of points I and P decrease significantly, which is accompanied by a clear inflection point (K). The quantum yield and energy distribution ratio of the PSⅡ reaction center change significantly (φPo, Ψo and φEo show an overall downward trend while φDo is promoted). The performance index and driving force (PIABS, PICSm and DFCSm) decrease significantly when the NaCl concentration is > 171mM, indicating that salt stress causes a partial inactivation of the PSII reaction center, and the functions of the donor side and the recipient side are damaged. Conclusion The above results indicate that Salix alba can respond to salt stress by intercepting Na+ in the roots, improving the selective absorption of K+ and Ca2+ and the transport capacity to the above ground parts of the plant, and increasing φDo, thus shows an ability to self-regulate and adapt.

2012 ◽  
Vol 58 (No. 3) ◽  
pp. 121-127 ◽  
Author(s):  
G.Q. Wu ◽  
S.M. Wang

To investigate the effects of Ca<sup>2+</sup> on cation accumulation and K<sup>+</sup>/Na<sup>+</sup> selectivity, in this study, two-week-old rice (Oryza sativa L.) plants were exposed to 25 or 125 mmol/L NaCl with or without 10 mmol/L CaCl<sub>2</sub>. At low salinity (25 mmol/L NaCl), Ca<sup>2+</sup> significantly decreased Na<sup>+</sup> accumulation in roots, increased K<sup>+</sup> accumulation in shoots, and maintained higher K<sup>+</sup>/Na<sup>+</sup> ratios in both roots and shoots of rice plants. At high salinity (125 mmol/L NaCl), however, Ca<sup>2+</sup> did not have any effects on Na<sup>+</sup>, K<sup>+</sup> accumulation and K<sup>+</sup>/Na<sup>+</sup> ratios in plants. Further analysis showed that, at low salinity, the addition of Ca<sup>2+</sup> significantly enhanced the selective absorption and transport capacity for K<sup>+</sup> over Na<sup>+</sup> in rice. Although Na<sup>+</sup> efflux and Na<sup>+</sup> influx were remarkably reduced by Ca<sup>2+</sup> under both low and high salt stresses, their ratio was lowered only under low salt stress. In summary, these results suggest that Ca<sup>2+</sup> could regulate K<sup>+</sup>/Na<sup>+</sup> homeostasis in rice at low salinity by enhancing the selectivity for K<sup>+</sup> over Na<sup>+</sup>, reducing the Na<sup>+</sup> influx and efflux, and lowering the futile cycling of Na<sup>+</sup>. &nbsp;


2017 ◽  
Vol 47 (6) ◽  
pp. 828-838 ◽  
Author(s):  
Xiumei Liu ◽  
Fengyun Ma ◽  
Hong Zhu ◽  
Xuesong Ma ◽  
Jianyao Guo ◽  
...  

The effects of magnetized water irrigation on the growth and ionic movements of one-year-old potted seedlings of Populus × euramericana ‘Neva’ were investigated. A magnetic treatment device was used to treat the plants. The contents of K+, Na+, Ca2+, and Mg2+ in leaves and roots were analyzed by atomic absorption spectrophotometry (AAS), and the fluxes of K+, Na+, Ca2+, Mg2+, and H+ in mesophyll cells and in meristematic zones were measured using a noninvasive micro-test technique (NIMT) after 30 days of treatment. After 90 days, the plants were harvested, and their growth indices and root morphology were measured. The results showed that (i) compared with nonmagnetic treatments (NMT), the magnetic treatments (MT) led to higher K+ and Mg2+ contents and lower Ca2+ content in roots and leaves, while the Na+ content was lower and the K+/Na+ ratio was higher; (ii) MT enhanced Na+ efflux, increased H+ influx, and decreased K+ and Mg2+ efflux compared with NMT; (iii) MT resulted in greater height, diameter, and leaf area of the plants and increased the length, surface area, and number of root tips compared with NMT; and (iv) stomatal conductance (Gs), net photosynthetic rate (Pn), intercellular CO2 concentration (Ci), and water use efficiency (WUE) were increased in MT, whereas both transpiration rate (Tr) and stomatal limiting value (Ls) were decreased compared with NMT. The results indicate that the use of magnetized water can promote plant quality and regulate the ion absorption, transpiration, and distribution. Thus, MT is conducive to the re-establishment of ionic homeostatic mechanisms via ion-selective absorption and transportation under salt stress.


2005 ◽  
pp. 82-92
Author(s):  
G. S. Taran

The paper characterizes poplar (Populus alba, P. nig­ra) and white willow (Salix alba) forests of the Irtysh and the Black Irtysh river floodplain, together with the silvery salt tree (Halimodendron halodendron) community of the Black Irtysh river floodplain. The Black Irtysh floodplain willow and poplar forests are separated into a new alliance, Rubio dolichophyllae—Populion albae Taran all. nov. (Salicetalia purpureae Moor 1958, Salicetea purpureae Moor 1958), which includes the associations Rubio dolichophyllae—Popu­letum albae Taran 1997 and Rubio dolichophyllae—Salicetum albae Taran ass. nov. The Halimodendron halodendron community is probably related to the class Nerio-Tamaricetea Br.-Bl. et de Bolós 1958. White poplar forests in the Irtysh R. upper reaches, described within the Semipalatinsk city limits, belong to the association Heracleo dissecti—Populetum albae Taran 1997 and its subassociation H. d. —P. a. lamietosum albi Taran 1997 (Equiseto hyemalis—Populion nigrae Taran 1997, Salicetalia purpureae Moor 1958).


1968 ◽  
Vol 33 (8) ◽  
pp. 2518-2525 ◽  
Author(s):  
M. Kubačková ◽  
Š. Karácsonyi ◽  
J. Hrivňák

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xue-Ming Zai ◽  
Jun-Jun Fan ◽  
Zhen-Ping Hao ◽  
Xing-Man Liu ◽  
Wang-Xiang Zhang

AbstractBeach plum (Prunus maritima) is an ornamental plant, famous for its strong salt and drought stress tolerance. However, the poor growth rate of transplanted seedlings has seriously restricted its application in salinized soil. This study investigated the effects of inoculation with arbuscular mycorrhizal fungus (AMF), Funneliformis mosseae, and phosphate-solubilizing fungus (PSF), Apophysomyces spartima, on the growth, nutrient (N, P, and K) uptake, and photosynthesis of beach plum under saline (170 mM NaCl) and non-saline (0 mM NaCl) conditions. We aimed to find measures to increase the growth rate of beach plum in saline-alkali land and to understand the reasons for this increase. The results showed that salinization adversely affected colonization by AMF but positively increased PSF populations (increased by 33.9–93.3% over non-NaCl treatment). The dual application of AMF and PSF mitigated the effects of salt stress on all growth parameters and nutrient uptake, significantly for roots (dry weight and P and N contents increased by 91.0%, 68.9%, and 40%, respectively, over non-NaCl treatment). Salinization caused significant reductions in net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (E), and intercellular CO2 concentration (Ci) value, while inoculation with AMF and PSF inoculations significantly abated such reductions. The maximum efficiency of photosystem II (PSII) (Fv/Fm), the photochemical quenching coefficient (qP), and the nonphotochemical quenching (NPQ) values were affected little by inoculation with AMF, PSF, or both under non-NaCl treatments. However, plants inoculated with AMF and/or PSF had higher Fv/Fm, qP, and ФPSII values (increased by 72.5–188.1%) than the control under NaCl treatment, but not a higher NPQ value. We concluded that inoculation with AMF or PSF increased nutrient uptake and improved the gas-exchange and Chl fluorescence parameters of beach plum under salt stress environment. These effects could be strengthened by the combination of AMF and PSF, especially for nutrient uptake, root growth, and Pn, thereby alleviating the deleterious effects of NaCl stress on beach plum growth.


Author(s):  
S. Lakshmi ◽  
V. Ravichandran ◽  
L. Arul ◽  
K. Krishna Surendar

Hydroponics study was conducted to screen eight rice genotypes (CO 51, ADT 53, ADT 37, IR 64, CO 43, ASD 16, Pokkali; TRY 3) under salinity stress on early seedling stage. Two Saline treatments (75 and 100 mM NaCl) were given at 15 days old seedling; observations were recorded at 10 days after salt stress. Results showed that shoot length, root length, total fresh and dry weight, shoot and root fresh weight, shoot and root dry weight and root- shoot ratio were reduced under saline conditions compared to control. Na+ ion Concentration and Na+/ k+ ratio was higher in saline treatments than control. However, K+ ion absorption decreased with increasing salinity level. Electrolyte leakage and osmotic potential had increasing trend with increasing level of salinity. In this study, rice genotypes Pokkali, TRY 3 and CO 43 perform as tolerant; CO 51, ADT 53 and ASD 16 perform as moderately tolerant; ADT 37 is susceptible and IR 64 is highly susceptible. This type of study is required to develop salt tolerant genotypes at salt stress during seedling stage; to increase the growth and yield of rice there by satisfy the need of country’s requirement.


2005 ◽  
Vol 53 (2) ◽  
pp. 229-239 ◽  
Author(s):  
F. A: Faheed ◽  
A. M. Hassanein ◽  
M. M. Azooz

A gradual increase in NaCl concentration in the growth medium was used as a strategy to adapt sorghum plants (Sorghum bicolor L.) to relatively high concentrations of NaCl. over a period of 15 days, a low percentage (22.2%) of sorghum seeds germinated in 200 mM NaCl, but most of the seedlings obtained (85.8%) died. On the other hand, plants subjected to adaptation by a gradual increase in NaCl concentration in the growth medium became capable of growth in soil containing 300 mM NaCl. In general, salinization induced a highly significant decrease in fresh and dry masses, and in the pigment content of sorghum seedlings. The content of free amino acids and soluble carbohydrates increased with a rise in the salinization level, especially in the adapted sorghum plants. The adapted plants contained less Na+ but more K+ compared to the unadapted plants, especially when the plants were subjected to relatively high NaCl concentration. Plants adapted in soil showed a new peroxidase isoenzyme form (POX-4). The peroxidase band POX-1 was detected under salt stress in both adapted and unadapted plants. Under salt stress, indophenol oxidase and glutamate oxaloacetate transaminase expressed new isoenzyme forms, IPOX-3 and IPOX-5, and GOT-2 and GOT-3, respectively. The induction of salt tolerance by a gradual increase in NaCl concentration for three weeks was recommended to overcome the inhibition of seed germination in saline soil.


Author(s):  
Luderlândio A. Silva ◽  
Marcos E. B. Brito ◽  
Pedro D. Fernandes ◽  
Francisco V. da S. Sá ◽  
Rômulo C. L. Moreira ◽  
...  

ABSTRACT This study aimed to evaluate the growth and physiology of citrus scion/rootstock combinations irrigated with saline water until the pre-flowering stage. The experiment was conducted in drainage lysimeters with capacity for 150 dm3, in randomized block design in a 2 x 10 factorial scheme, corresponding to two electrical conductivities of water (S1 = 0.3 and S2 = 3.0 dS m-1) and ten scion/rootstock combinations (nine hybrids and one commercial variety) grafted with Tahiti lime, in three repetitions and one plant per plot. Grafted seedlings were transplanted one year after sowing, subjected to salt stress from 15 days after transplanting until the pre-flowering period, and evaluated for gas exchanges and growth. The irrigation with 3.0 dS m-1 saline water did not influence the photosynthetic activity of the studied citrus scion/rootstock combinations until the pre-flowering. The genotype Santa Cruz Rangpur lime (LCRSTC) was more sensitive to irrigation water salinity in terms of growth. The least sensitive combinations to salinity were Tahiti lime grafted onto TSKFL x (LCR x TR) - 018, TSKFL x TRBK - 011 and TSKFL x TRBK - 30.


2009 ◽  
Vol 171 (1-4) ◽  
pp. 197-204 ◽  
Author(s):  
Tatiana Wuytack ◽  
Kris Verheyen ◽  
Karen Wuyts ◽  
Fatemeh Kardel ◽  
Sandy Adriaenssens ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document