scholarly journals Bacterial variation in the oral microbiota in multiple sclerosis patients

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260384
Author(s):  
Zahra Zangeneh ◽  
Ahya Abdi-Ali ◽  
Kianoosh Khamooshian ◽  
Amirhoushang Alvandi ◽  
Ramin Abiri

Background Microorganisms in oral cavity are called oral microbiota, while microbiome consists of total genome content of microorganisms in a host. Interaction between host and microorganisms is important in nervous system development and nervous diseases such as Autism, Alzheimer, Parkinson and Multiple Sclerosis (MS). Bacterial infections, as an environmental factor in MS pathogenesis play role in T helper 17(Th17) increase and it enhancing the production of pro-inflammatory cytokines such as Interlukin-21(IL-21), IL-17 and IL -22. Oral microbiota consists diverse populations of cultivable and uncultivable bacterial species. Denaturing gradient gel electrophoresis (DGGE) is an acceptable method for identification of uncultivable bacteria. In this study, we compared the bacterial population diversity in the oral cavity between MS and healthy people. Methods From October to March 2019, samples were taken at Kermanshah University of Medical Sciences’ MS patients center. A total of 30 samples were taken from MS patients and another 30 samples were taken from healthy people. Phenotypic tests were used to identify bacteria after pure cultures were obtained. DNA was extracted from 1 mL of saliva, and PCR products produced with primers were electrophoresed on polyacrylamide gels. Results The genera Staphylococcus, Actinomyces, Fusobacterium, Bacteroides, Porphyromonas, Prevotella, Veillonella, Propionibacterium and uncultivable bacteria with accession number MW880919-25, JQ477416.1, KF074888.1 and several other un-culturable strains were significantly more abundant in the MS group while Lactobacillus and Peptostreptococcus were more prevalent in the normal healthy group according to logistic regression method. Conclusion Oral micro-organisms may alleviate or exacerbate inflammatory condition which impact MS disease pathogenesis. It may be assumed that controlling oral infections may result in reduction of MS disease progression.

2021 ◽  
Author(s):  
Alba Troci ◽  
Olga Zimmermann ◽  
Daniela Esser ◽  
Paula Krampitz ◽  
Sandra May ◽  
...  

Abstract Objective: To elucidate cross-sectional patterns and longitudinal changes of oral and stool microbiota in multiple sclerosis (MS) patients and the effect of B-cell depletion.Methods: We conducted an observational, longitudinal clinical cohort study analysing four timepoints over 12 months in 36 MS patients, of whom 22 initiated B-cell depleting therapy with ocrelizumab and a healthy control group. For microbiota analysis of the oral cavity and the gut, provided stool and oral swab samples underwent 16S rDNA sequencing and subsequent bioinformatic analyses. Results: Oral microbiota-patterns exhibited a reduced alpha-diversity and unique differential microbiota changes compared to stool such as increased levels of Proteobacteria and decreased abundance of Actinobacteria. Following B-cell depletion, we observed increased alpha-diversity in the gut and the oral cavity as well as a long-term sustained reduction of pro-inflammatory Gram-negative bacteria (e.g., Escherichia/Shigella).Conclusion: MS patients have altered stool and oral microbiota diversity patterns compared to healthy controls, which are most pronounced in patients with higher disease activity and disability. Therapeutic B-cell depletion is associated with persisting regression of these changes. Whether these microbial changes are unspecific side-effects of B-cell depletion or indirectly modulate MS disease activity and progression is currently unknown and necessitates further investigations.


mSphere ◽  
2019 ◽  
Vol 4 (3) ◽  
Author(s):  
Shinya Kageyama ◽  
Mikari Asakawa ◽  
Toru Takeshita ◽  
Yukari Ihara ◽  
Shunsuke Kanno ◽  
...  

ABSTRACTNewborns are constantly exposed to various microbes from birth; hence, diverse commensal bacteria colonize the oral cavity. However, how or when these bacteria construct a complex and stable ecosystem remains unclear. This prospective cohort study examined the temporal changes in bacterial diversity and composition in tongue microbiota during infancy. We longitudinally collected a total of 464 tongue swab samples from 8 infants (age of <6 months at baseline) for approximately 2 years. We also collected samples from 32 children (aged 0 to 2 years) and 73 adults (aged 20 to 29 years) cross-sectionally as control groups. Bacterial diversities and compositions were determined by 16S rRNA gene sequencing. The tongue bacterial diversity in infancy, measured as the number of observed operational taxonomic units (OTUs), rapidly increased and nearly reached the same level as that in adults by around 80 weeks. The overall tongue bacterial composition in the transitional phase, 80 to 120 weeks, was more similar to that of adults than to that of the early exponential phase (EEP), 10 to 29 weeks, according to analysis of similarities. Dominant OTUs in the EEP corresponding toStreptococcus perorisandStreptococcus lactariusexponentially decreased immediately after EEP, around 30 to 49 weeks, whereas several OTUs corresponding toGranulicatella adiacens,Actinomyces odontolyticus, andFusobacterium periodonticumreciprocally increased during the same period. These results suggest that a drastic compositional shift of tongue microbiota occurs before the age of 1 year, and then bacterial diversity and overall bacterial composition reach levels comparable to those in adults by the age of 2 years.IMPORTANCEEvaluating the development of oral microbiota during infancy is important for understanding the subsequent colonization of bacterial species and the process of formation of mature microbiota in the oral cavity. We examined tongue microbiota longitudinally collected from 8 infants and found that drastic compositional shifts in tongue microbiota occur before the age of 1 year, and then bacterial diversity and overall bacterial composition reach levels comparable to those in adults by the age of 2 years. These results may be helpful for preventing the development of various diseases associated with oral microbiota throughout life.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Patrícia M. Oba ◽  
Meredith Q. Carroll ◽  
Celeste Alexander ◽  
Helen Valentine ◽  
Amy J. Somrak ◽  
...  

Abstract Background Oral diseases are common in dogs, with microbiota playing a prominent role in the disease process. Oral cavity habitats harbor unique microbiota populations that have relevance to health and disease. Despite their importance, the canine oral cavity microbial habitats have been poorly studied. The objectives of this study were to (1) characterize the oral microbiota of different habitats of dogs and (2) correlate oral health scores with bacterial taxa and identify what sites may be good options for understanding the role of microbiota in oral diseases. We used next-generation sequencing to characterize the salivary (SAL), subgingival (SUB), and supragingival (SUP) microbial habitats of 26 healthy adult female Beagle dogs (4.0 ± 1.2 year old) and identify taxa associated with periodontal disease indices. Results Bacterial species richness was highest for SAL, moderate for SUB, and lowest for SUP samples (p < 0.001). Unweighted and weighted principal coordinates plots showed clustering by habitat, with SAL and SUP samples being the most different from one another. Bacteroidetes, Proteobacteria, Firmicutes, Fusobacteria, Actinobacteria, and Spirochaetes were the predominant phyla in all habitats. Paludibacter, Filifactor, Peptostreptococcus, Fusibacter, Anaerovorax, Fusobacterium, Leptotrichia, Desulfomicrobium, and TG5 were enriched in SUB samples, while Actinomyces, Corynebacterium, Leucobacter, Euzebya, Capnocytophaga, Bergeyella, Lautropia, Lampropedia, Desulfobulbus, Enhydrobacter, and Moraxella were enriched in SUP samples. Prevotella, SHD-231, Helcococcus, Treponema, and Acholeplasma were enriched in SAL samples. p-75-a5, Arcobacter, and Pasteurella were diminished in SUB samples. Porphyromonas, Peptococcus, Parvimonas, and Campylobacter were diminished in SUP samples, while Tannerella, Proteocalla, Schwartzia, and Neisseria were diminished in SAL samples. Actinomyces, Corynebacterium, Capnocytophaga, Leptotrichia, and Neisseria were associated with higher oral health scores (worsened health) in plaque samples. Conclusions Our results demonstrate the differences that exist among canine salivary, subgingival plaque and supragingival plaque habitats. Salivary samples do not require sedation and are easy to collect, but do not accurately represent the plaque populations that are most important to oral disease. Plaque Actinomyces, Corynebacterium, Capnocytophaga, Leptotrichia, and Neisseria were associated with higher (worse) oral health scores. Future studies analyzing samples from progressive disease stages are needed to validate these results and understand the role of bacteria in periodontal disease development.


2009 ◽  
Vol 55 (5) ◽  
pp. 622-626 ◽  
Author(s):  
Cássio do Nascimento ◽  
Rubens Ferreira de Albuquerque Junior ◽  
João Paulo Mardegan Issa ◽  
Izabel Yoko Ito ◽  
Cláudia Helena Lovato da Silva ◽  
...  

The DNA Checkerboard method enables the simultaneous identification of distinct microorganisms in a large number of samples and employs up to 45 whole genomic DNA probes to gram-negative and gram-positive bacterial species present in subgingival biofilms. Collectively, they account for 55%–60% of the bacteria in subgingival biofilms. In this study, we present the DNA Checkerboard hybridization as an alternative method for the detection and quantitation of Candida species in oral cavities. Our results reveal that DNA Checkerboard is sensitive enough and constitutes a powerful and appropriate method for detecting and quantifying Candida species found in the oral cavity.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1948
Author(s):  
Wurood kh. Al-lehaibi ◽  
Khulood A. Al-makhzomi ◽  
Hani Sh. Mohammed ◽  
Hamid Hammad Enezei ◽  
Mohammad Khursheed Alam

Background: The study examined the oral microbiota, physiological and immunological changes in patients using thermoplastic retainers during three months of use. Methods: The study included several steps. Firstly, 10 swabs were collected from the buccal and palatal surfaces of the teeth of the patients, approximately 2 mL of saliva was collected from the same patients and 2 mL of saliva was collected from 10 healthy people to measure the pH and secretory IgA level. This was followed by the isolation and identfication of the bacterial isolates in the patient samples. Then, isolate susceptibility toward chlorhexidine (CHX) and their adhesion ability to thermoplastic retainer surfaces was measured. In addition to that the study estimated the numbers of Lactobacillus and Streptooccus mutans colonies during three months and finally, a comparsion of pH acidity and IgA level between the patients and healthy people was performed. The results showed the predominant bacteria during the three months were Lactobacillus spp and Streptococcus spp followed by different rates of other bacteria. Raoultella ornithinolytica showed more resistance to CHX while Lactobacillus spp. showed more sensitivity. Streptococcus mutans colony levels were higher than Lactobacillus spp colonies during the three months, also S. mutans had the highest value in adherence to retainer thermoplastic. Finally, pH acidity showed a highly significant difference (p ≤ 0.05) in the third month, like IgA levels (p ≤ 0.05). Conclusions: According to the results obtained from the current study, the researchers noted that the thermoplastic retainers helped change the oral cavity environment.


2018 ◽  
Vol 11 (5) ◽  
pp. 432-444 ◽  
Author(s):  
Melissa Grant ◽  
Ola Kilsgård ◽  
Sigvard Åkerman ◽  
Björn Klinge ◽  
Ryan T. Demmer ◽  
...  

Antimicrobial peptides (AMPs) are a diverse family of peptides that defend the mucosal surfaces of the oral cavity and other locations. Many AMPs have multiple functions and properties that influence aspects of innate defense and colonization by microorganisms. The human oral cavity is home to the second-most diverse microbiome, and the health of the mouth is influenced by the presence of these bacteria as well as by extrinsic factors such as periodontitis and smoking. This study hypothesized that the AMP profile is different in the presence of extrinsic factors and that this would also be reflected in the bacteria present. The AMP profile was analyzed by quantitative selected-reaction-monitoring mass spectrometry analysis and 40 bacterial species were quantified by DNA-DNA hybridization in saliva donated by 41 individuals. Periodontal status was assessed through dental examination and smoking status through medical charting. Periodontal health (in nonsmokers) was associated with a higher abundance of ribonuclease 7, protachykinin 1, β-defensin 128, lipocalin 1, bactericidal permeability-increasing protein fold-containing family B member 3, and bone-marrow proteoglycan. Nonsmoking periodontal disease was associated with an abundance of neutrophil defensin 1 and cathelicidin. However, 7 AMPs were overabundant in periodontal disease in smokers: adrenomedullin, eosinophil peroxidase, 3 different histones, myeloperoxidase, and neutrophil defensin 1. There were no differentially abundant AMPs in smokers versus nonsmokers with periodontal health. Correlation network inference of healthy nonsmokers, healthy smokers, nonsmoking periodontitis, or smoking periodontitis donors demonstrated very different networks growing in complexity with increasing numbers of stressors. The study highlights the importance of the interaction between the oral cavity and its resident microbiota and how this may be influenced by periodontal disease and smoking.


Sign in / Sign up

Export Citation Format

Share Document