scholarly journals The Relationship between Insulin Resistance and the Cardiovascular Biomarker Growth Differentiation Factor-15 in Obese Patients

2011 ◽  
Vol 57 (2) ◽  
pp. 309-316 ◽  
Author(s):  
Greisa Vila ◽  
Michaela Riedl ◽  
Christian Anderwald ◽  
Michael Resl ◽  
Ammon Handisurya ◽  
...  

BACKGROUND Growth differentiation factor-15 (GDF-15) is a stress-responsive cytokine linked to obesity comorbidities such as cardiovascular disease, inflammation, and cancer. GDF-15 also has adipokine properties and recently emerged as a prognostic biomarker for cardiovascular events. METHODS We evaluated the relationship of plasma GDF-15 concentrations with parameters of obesity, inflammation, and glucose and lipid metabolism in a cohort of 118 morbidly obese patients [mean (SD) age 37.2 (12) years, 89 females, 29 males] and 30 age- and sex-matched healthy lean individuals. All study participants underwent a 75-g oral glucose tolerance test; 28 patients were studied before and 1 year after Roux-en-Y gastric bypass surgery. RESULTS Obese individuals displayed increased plasma GDF-15 concentrations (P < 0.001), with highest concentrations observed in patients with type 2 diabetes. GDF-15 was positively correlated with age, waist-to-height ratio, mean arterial blood pressure, triglycerides, creatinine, glucose, insulin, C-peptide, hemoglobin A1c, and homeostatic model assessment insulin resistance index and negatively correlated with oral glucose insulin sensitivity. Age, homeostatic model assessment index, oral glucose insulin sensitivity, and creatinine were independent predictors of GDF-15 concentrations. Roux-en-Y gastric bypass led to a significant reduction in weight, leptin, insulin, and insulin resistance, but further increased GDF-15 concentrations (P < 0.001). CONCLUSIONS The associations between circulating GDF-15 concentrations and age, insulin resistance, and creatinine might account for the additional cardiovascular predictive information of GDF-15 compared to traditional risk factors. Nevertheless, GDF-15 changes following bariatric surgery suggest an indirect relationship between GDF-15 and insulin resistance. The clinical utility of GDF-15 as a biomarker might be limited until the pathways directly controlling GDF-15 concentrations are better understood.

2017 ◽  
Vol 70 (5-6) ◽  
pp. 155-161
Author(s):  
Stanislava Nikolic ◽  
Nikola Curic ◽  
Romana Mijovic ◽  
Branislava Ilincic ◽  
Damir Benc

Introduction. Mathematical formulas, such as homeostatic model assessment indexes, proved to be useful for the estimation of insulin resistance. Nevertheless, numerous published results point to a considerable variability of their reference values. The aim of this study was to use homeostatic model assessment indexes and evaluate levels of insulin resistance in nondiabetic patients. Material and Methods. The study included 486 individuals (mean age 36.84 ? 12.86; 17% of males and 83% of females). Blood sampling was performed in order to determine glucose and insulin plasma levels, at the 0th and 120th minute of the oral glucose tolerance test. The indexes were calculated by the use of homeostatic model assessment 2 calculator, homeostatic model assessment of insulin resistance, homeostatic model assessment of insulin sensitivity, and homeostatic model assessment of ?-cells function. The results were statistically analyzed using a Data Analysis programme. Results. In the examined population, the average glycemic values of the oral glucose tolerance test were within the euglycemic scope (Gluc 0 = 4.76 ? 0.45 mmol/L; Gluc 120 = 5.24 ? 1.17 mmol/L), while the average values of calculated homeostatic model assessment indexes were: insulin resistance - 1.41 ? 0.82; ?-cells function - 131.54 ? 49.41%, and insulin sensitivity - 91.94 ? 47.32%. According to study cut-off values, homeostatic model assessment of insulin resistance was less than 2. We found 84 (17.28%) individuals with increased insulin resistance. Also, we set the lowest reference value for homeostatic model assessment of insulin sensitivity at less than 50%. With the probability of 66.67% (x? ? 1SD), basal insulin level under 11.9 mIU/L can be considered to correspond to physiologic level of insulin resistance. Conclusion. The follow-up of increased insulin resistance and altered secretion of pancreatic ?-cells, at early stages of glucose regulation disturbances, may be useful in assessing dynamics and level of glucose regulation disturbances and their appropriate treatment. <br><br><font color="red"><b> This article has been corrected. Link to the correction <u><a href="http://dx.doi.org/10.2298/MPNS1708202E">10.2298/MPNS1708202E</a><u></b></font>


2008 ◽  
Vol 93 (6) ◽  
pp. 2307-2312 ◽  
Author(s):  
Michaela Riedl ◽  
Greisa Vila ◽  
Christina Maier ◽  
Ammon Handisurya ◽  
Soheila Shakeri-Manesch ◽  
...  

Abstract Context: Osteopontin (OPN) is a multifunctional protein involved in bone metabolism, cardiovascular disease, diabetes, and obesity. OPN levels are elevated in the plasma and adipose tissue of obese subjects, and are decreased with diet-induced weight loss. Objective: We investigated the effect of bariatric surgery on plasma OPN concentrations in morbidly obese patients. Setting: The study was performed at a university hospital. Subjects: We investigated 40 obese patients aged 43.1 ± 1.8 yr, scheduled to undergo bariatric surgery. Roux-en-Y gastric bypass (RYGB) was performed in 30 subjects (27 females, three males), and laparoscopic adjustable gastric banding (LAGB) in 10 subjects (eight females, two males). Study Design: All patients were studied before and 1 yr (10.3–14.8 months) after the intervention. Main Outcome Measures: OPN, leptin, C-reactive protein, insulin, the homeostatic model assessment insulin resistance index, calcium, 25-hydroxyvitamin D, C telopeptide, and osteocalcin were determined. Results: Both bariatric procedures significantly reduced body weight, body mass index, insulin, leptin, and C-reactive protein 1 yr after surgery. Plasma OPN increased from 31.4 ± 3.8 to 52.8 ± 3.7 ng/ml after RYGB (P &lt; 0.001) and from 29.8 ± 6.9 to 46.4 ± 10.6 ng/ml after LAGB (P = 0.042). Preoperative OPN correlated with age, insulin, the homeostatic model assessment insulin resistance index, and postoperative OPN. Postoperative OPN correlated with C telopeptide and osteocalcin. Conclusions: One year after RYGB and LAGB, plasma OPN levels significantly increased and correlated with biomarkers of bone turnover. Unlike other proinflammatory cytokines, OPN does not normalize but increases further after bariatric surgery.


2018 ◽  
Vol 103 (5) ◽  
pp. 1877-1888 ◽  
Author(s):  
Nicholette D Palmer ◽  
Hayrettin Okut ◽  
Fang-Chi Hsu ◽  
Maggie C Y Ng ◽  
Yii-Der Ida Chen ◽  
...  

Abstract Context Metabolomics provides a biochemical fingerprint that, when coupled with clinical phenotypes, can provide insight into physiological processes. Objective Survey metabolites associated with dynamic and basal measures of glucose homeostasis. Design Analysis of 733 plasma metabolites from the Insulin Resistance Atherosclerosis Family Study. Setting Community based. Participants One thousand one hundred eleven Mexican Americans. Main Outcome Dynamic measures were obtained from the frequently sampled intravenous glucose tolerance test and included insulin sensitivity and acute insulin response to glucose. Basal measures included homeostatic model assessment of insulin resistance and β-cell function. Results Insulin sensitivity was associated with 99 metabolites (P &lt; 6.82 × 10−5) explaining 28% of the variance (R2adj) beyond 28% by body mass index. Beyond branched chain amino acids (BCAAs; P = 1.85 × 10−18 to 1.70 × 10−5, R2adj = 8.1%) and phospholipids (P = 3.51 × 10−17 to 3.00 × 10−5, R2adj = 14%), novel signatures of long-chain fatty acids (LCFAs; P = 4.49 × 10−23 to 4.14 × 10−7, R2adj = 11%) were observed. Conditional analysis suggested that BCAA and LCFA signatures were independent. LCFAs were not associated with homeostatic model assessment of insulin resistance (P &gt; 0.024). Acute insulin response to glucose was associated with six metabolites; glucose had the strongest association (P = 5.68 × 10−16). Homeostatic model assessment of β-cell function had significant signatures from the urea cycle (P = 9.64 × 10−14 to 7.27 × 10−6, R2adj = 11%). Novel associations of polyunsaturated fatty acids (P = 2.58 × 10−13 to 6.70 × 10−5, R2adj = 10%) and LCFAs (P = 9.06 × 10−15 to 3.93 × 10−7, R2adj = 10%) were observed with glucose effectiveness. Assessment of the hyperbolic relationship between insulin sensitivity and secretion through the disposition index revealed a distinctive signature of polyunsaturated fatty acids (P = 1.55 × 10−12 to 5.81 × 10−6; R2adj = 3.8%) beyond that of its component measures. Conclusions Metabolomics reveals distinct signatures that differentiate dynamic and basal measures of glucose homeostasis and further identifies new metabolite classes associated with dynamic measures, providing expanded insight into the metabolic basis of insulin resistance.


Biomolecules ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1304
Author(s):  
Katarzyna Komosinska-Vassev ◽  
Olga Gala ◽  
Krystyna Olczyk ◽  
Agnieszka Jura-Półtorak ◽  
Paweł Olczyk

The quantitative analysis of selected regulatory molecules, i.e., adropin, irisin, and vaspin in the plasma of obese patients with newly diagnosed, untreated type 2 diabetes mellitus, and in the same patients after six months of using metformin, in relation to adropinemia, irisinemia and vaspinemia in obese individuals, was performed. The relationship between plasma concentration of the adipocytokines/regulatory peptides and parameters of renal function (albumin/creatinine ratio—ACR, estimated glomerular filtration rate—eGFR), values of insulin resistance indicators (Homeostatic Model Assessment of Insulin Resistance (HOMA-IR2), Homeostatic Model Assessment of Insulin Sensitivity (HOMA-S), Homeostatic Model Assessment of β-cell function (HOMA-B), quantitative insulin sensitivity check index (QUICKI), insulin), and parameters of carbohydrate-lipid metabolism (fasting plasma glucose—FPG, glycated hemoglobin—HbA1C, estimated glucose disposal rate—eGDR, fasting lipid profile, TG/HDL ratio) in obese type 2 diabetic patients was also investigated. Circulating irisin and vaspin were found significantly different in subjects with metabolically healthy obesity and in type 2 diabetic patients. Significant increases in blood levels of both analyzed adipokines/regulatory peptides were observed in diabetic patients after six months of metformin treatment, as compared to pre-treatment levels. The change in plasma vaspin level in response to metformin therapy was parallel with the improving of insulin resistance/sensitivity parameters. An attempt was made to identify a set of biochemical tests that would vary greatly in obese non-diabetic subjects and obese patients with type 2 diabetes, as well as a set of parameters that are changing in patients with type 2 diabetes under the influence of six months metformin therapy, and thus differentiating patients′ metabolic state before and after treatment. For these data analyses, both statistical measures of strength of the relationships of individual parameters, as well as multidimensional methods, including discriminant analysis and multifactorial analysis derived from machine learning methods, were used. Adropin, irisin, and vaspin were found as promising regulatory molecules, which may turn out to be useful indicators in the early detection of T2DM and differentiating the obesity phenotype with normal metabolic profile from T2DM obese patients. Multifactorial discriminant analysis revealed that irisin and vaspin plasma levels contribute clinically relevant information concerning the effectiveness of metformin treatment in T2D patients. Among the sets of variables differentiating with the highest accuracy the metabolic state of patients before and after six-month metformin treatment, were: (1) vaspin, HbA1c, HDL, LDL, TG, insulin, and HOMA-B (ACC = 88 [%]); (2) vaspin, irisin, QUICKI, and eGDR (ACC = 86 [%]); as well as, (3) vaspin, irisin, LDL, HOMA-S, ACR, and eGFR (ACC = 86 [%]).


Nutrients ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1338
Author(s):  
Brittany R. Allman ◽  
D. Keith Williams ◽  
Elisabet Børsheim ◽  
Aline Andres

Literature describing a relationship between dietary protein intake during pregnancy and offspring insulin resistance are equivocal perhaps because of the lapse between maternal and offspring measurements (~9–40 years). Thus, we evaluated protein intake in healthy women [n = 182, mean ± SD; body mass index (BMI): 26.2 ± 4.2 kg/m2] in early pregnancy (8.4 ± 1.6 weeks, EP), late pregnancy (30.1 ± 0.4 weeks, LP), and averaged throughout pregnancy, and determined the relationship between protein intake and offspring homeostatic model assessment of insulin resistance (HOMA2-IR) at 12 (12mo) and 24 (24mo) months. EP protein (g·kg−1·day−1) did not associate with HOMA2-IR at 12mo (β = 0.153, p = 0.429) or 24mo (β = −0.349, p = 0.098). LP protein did not associate with HOMA2-IR at 12mo (β = 0.023, p = 0.916) or 24mo (β = −0.442, p = 0.085). Finally, average protein did not associate with HOMA2-IR at 12mo (β = 0.711, p = 0.05) or 24mo (β = −0.445, p = 0.294). Results remained unchanged after adjusting for plant protein intake quartiles during pregnancy, maternal BMI, and offspring sex and body fat percentage. Additionally, these relationships did not change after quartile analysis of average protein intake, even after considering offspring fasting time and HOMA2-IR outliers, and maternal under-reporters of energy intake. Protein intake during pregnancy is not associated with indirect measurements of insulin sensitivity in offspring during the first two years of life.


Author(s):  
Osamu Arisaka ◽  
Toshimi Sairenchi ◽  
Go Ichikawa ◽  
Satomi Koyama

Abstract:To elucidate the effect of early growth patterns on the metabolic sensitivity to adiposity, we examined the relationship between the homeostatic model assessment of insulin resistance (HOMA-IR) and body mass index (BMI) levels at 12 years of age in 101 boys and 91 girls in a birth cohort. Children with an increase in BMI from the ages of 1.5 to 3 years exhibited a greater increase of HOMA-IR per BMI increase at 12 years of age compared to those with a decrease in BMI or stable BMI from 1.5 to 3 years. This suggests that children who show an increase in BMI from 1.5 to 3 years, a period normally characterized by a decreased or stable BMI, are more prone to developing insulin resistance at 12 years of age.


2016 ◽  
Vol 101 (2) ◽  
pp. 626-634 ◽  
Author(s):  
Antigoni Z. Lalia ◽  
Surendra Dasari ◽  
Matthew L. Johnson ◽  
Matthew M. Robinson ◽  
Adam R. Konopka ◽  
...  

Context: Numerous factors are purported to influence insulin sensitivity including age, adiposity, mitochondrial function, and physical fitness. Univariate associations cannot address the complexity of insulin resistance or the interrelationship among potential determinants. Objective: The objective of the study was to identify significant independent predictors of insulin sensitivity across a range of age and adiposity in humans. Design, Setting, and Participants: Peripheral and hepatic insulin sensitivity were measured by two stage hyperinsulinemic-euglycemic clamps in 116 men and women (aged 19–78 y). Insulin-stimulated glucose disposal, the suppression of endogenous glucose production during hyperinsulinemia, and homeostatic model assessment of insulin resistance were tested for associations with 11 potential predictors. Abdominal subcutaneous fat, visceral fat (AFVISC), intrahepatic lipid, and intramyocellular lipid (IMCL) were quantified by magnetic resonance imaging and spectroscopy. Skeletal muscle mitochondrial respiratory capacity (state 3), coupling efficiency, and reactive oxygen species production were evaluated from muscle biopsies. Aerobic fitness was measured from whole-body maximum oxygen uptake (VO2 peak), and metabolic flexibility was determined using indirect calorimetry. Results: Multiple regression analysis revealed that AFVISC (P &lt; .0001) and intrahepatic lipid (P = .002) were independent negative predictors of peripheral insulin sensitivity, whereas VO2 peak (P = .0007) and IMCL (P = .023) were positive predictors. Mitochondrial capacity and efficiency were not independent determinants of peripheral insulin sensitivity. The suppression of endogenous glucose production during hyperinsulinemia model of hepatic insulin sensitivity revealed percentage fat (P &lt; .0001) and AFVISC (P = .001) as significant negative predictors. Modeling homeostatic model assessment of insulin resistance identified AFVISC (P &lt; .0001), VO2 peak (P = .001), and IMCL (P = .01) as independent predictors. Conclusion: The reduction in insulin sensitivity observed with aging is driven primarily by age-related changes in the content and distribution of adipose tissue and is independent of muscle mitochondrial function or chronological age.


2002 ◽  
Vol 30 (4) ◽  
pp. 386-390 ◽  
Author(s):  
O Öncül ◽  
C Top ◽  
S Özkan ◽  
Ş Çavuşlu ◽  
M Danaci

Interleukin 2 (IL-2), a Th1 lymphocyte-derived cytokine, is thought to play an important role in the pathogenesis of type 2 diabetes and rheumatoid arthritis (RA). The aim of our study was to evaluate changes in serum IL-2 levels and their correlation with glucose metabolism abnormalities, such as insulin resistance, in patients with RA. Thirty-six subjects with varying degrees of disease activity and 20 healthy age-, sex- and body mass index-matched control individuals were evaluated. Patients with any causes of peripheral insulin resistance were excluded. After a 12-h overnight fast, fasting insulin levels, homeostatic model assessment-insulin resistance (HOMA-IR) estimated insulin sensitivity, and serum IL-2 levels were significantly higher in all patients with RA than in the control individuals. Fasting insulin, HOMA-IR scores and IL-2 levels were correlated in the RA group. This study showed that patients with RA have altered IL-2 regulation, and that there was a significant correlation between serum IL-2 levels and insulin sensitivity.


Author(s):  
Francesca Caroppo ◽  
Alfonso Galderisi ◽  
Laura Ventura ◽  
Anna Belloni Fortina

AbstractPsoriasis in adults is associated with an increased risk of metabolic disease. Various cardiometabolic comorbidities have been reported in childhood psoriasis, but only a few studies have analyzed the prevalence of metabolic syndrome. We performed a single-center prospective study investigating the prevalence of metabolic syndrome and insulin resistance in children with psoriasis. The prevalence of metabolic syndrome was evaluated in 60 pre-pubertal children with psoriasis (age: 3–10 years), accordingly to recently established criteria for the diagnosis of metabolic syndrome in children. Insulin resistance was considered altered when the homeostatic model assessment (HOMA-IR) for insulin resistance was ≥ 90th sex- and age-specific percentile and HOMA 2-IR was > 1.8. Eighteen (30%) children with psoriasis were found to have metabolic syndrome. Sixteen (27%) children were found to have insulin resistance.Conclusion: Our data underline the importance of assessing metabolic syndrome not only in adults and adolescents but also in young children with psoriasis. What is Known:• Psoriasis in adults is strongly associated with metabolic disease and insulin resistance.• Very limited data are available on the prevalence of metabolic syndrome and insulin resistance in pre-pubertal children with psoriasis. What is New:• This study reports that in pre-pubertal children with psoriasis, there is a high prevalence of metabolic syndrome and insulin resistance.• In children with psoriasis metabolic syndrome risk factors should be assessed.


Sign in / Sign up

Export Citation Format

Share Document