scholarly journals Cortical Interneuron Development: a role for small Rho GTPases

Author(s):  
Zouzana Kounoupa ◽  
Domna Karagogeos

GABAergic interneurons control cortical excitation/inhibition balance and are implicated in severe neurodevelopmental disorders. In contrast to the multiplicity of signals underlying the generation and migration of cortical interneurons, the intracellular proteins mediating the response to these cues are mostly unknown. We have demonstrated the unique and diverse roles of the Rho GTPases Rac1 and 3 in cell cycle and morphology in transgenic animals where Rac1 and Rac1/3 were ablated specifically in cortical interneurons. In the Rac1 mutant, progenitors delay their cell cycle exit probably due to a prolonged G1 phase resulting in a cortex with 50% reductions in interneurons and an imbalance of excitation/inhibition in cortical circuits. This disruption in GABAergic inhibition alters glutamatergic function in the adult cortex that could be reversed by enhancement of GABAergic function during an early postnatal period. Furthermore, this disruption disturbs the neuronal synchronization in the adult cortex. In the double mutant, additional severe cytoskeletal defects result in an 80% interneuron decrease. Both lines die from epileptic seizures postnatally. We have made progress towards characterizing the cell cycle defect in Rac1 mutant interneuron progenitors, determining the morphological and synaptic characteristics of single and double mutant interneurons and identifying some of the molecular players by which Racs exert their actions by proteomic analysis. In our present work, we review these studies and discuss open questions and future perspectives. We expect that our data will contribute to the understanding of the function of cortical interneurons, especially since preclinical models of interneuron-based cell therapies are being established.

2020 ◽  
Vol 21 (4) ◽  
pp. 1502 ◽  
Author(s):  
Almudena García-Ortiz ◽  
Juan Manuel Serrador

Ezrin, radixin and moesin proteins (ERMs) are plasma membrane (PM) organizers that link the actin cytoskeleton to the cytoplasmic tail of transmembrane proteins, many of which are adhesion receptors, in order to regulate the formation of F-actin-based structures (e.g., microspikes and microvilli). ERMs also effect transmission of signals from the PM into the cell, an action mainly exerted through the compartmentalized activation of the small Rho GTPases Rho, Rac and Cdc42. Ezrin and moesin are the ERMs more highly expressed in leukocytes, and although they do not always share functions, both are mainly regulated through phosphatidylinositol 4,5-bisphosphate (PIP2) binding to the N-terminal band 4.1 protein-ERM (FERM) domain and phosphorylation of a conserved Thr in the C-terminal ERM association domain (C-ERMAD), exerting their functions through a wide assortment of mechanisms. In this review we will discuss some of these mechanisms, focusing on how they regulate polarization and migration in leukocytes, and formation of actin-based cellular structures like the phagocytic cup-endosome and the immune synapse in macrophages/neutrophils and lymphocytes, respectively, which represent essential aspects of the effector immune response.


2020 ◽  
Author(s):  
Tian Lan ◽  
Meng Yu ◽  
Weisheng Chen ◽  
Jun Yin ◽  
Hsiang-Tsun Chang ◽  
...  

AbstractThe heterogeneity of cell phenotypes remains a barrier in progressing cell research and a challenge in conquering cancer-related drug resistance. Cell morphology, the most direct property of cell phenotype, evolves along the progression of the cell cycle; meanwhile, cell motility, the dynamic property of cell phenotype, also alters over the cell cycle. However, a quantifiable research understanding the strict relationship between the cell cycle and cell migration is missing. Herein, we separately elucidate the correspondence of single NIH 3T3 fibroblast migratory behaviors with the G1, S, and G2 phases of the cell cycle, an underlying property of proliferation. The results show that synergies among the highly spatiotemporal arrangements of signals in Rho GTPases and cyclin-dependent kinase inhibitors, p21Cip1, and p27Kip1 coordinates proliferation and migration. Taken together, we explain the synergies among these processes through providing an interactive molecular mechanism between the cell cycle and cell migration and demonstrate that both cell morphology and the dynamic subcellular behavior are homogenous within each stage of the cell cycle phases, posing potential implications in countering drug resistance.


Oncogene ◽  
2020 ◽  
Vol 39 (18) ◽  
pp. 3666-3679 ◽  
Author(s):  
Mario De Piano ◽  
Valeria Manuelli ◽  
Giorgia Zadra ◽  
Jonathan Otte ◽  
Per-Henrik D. Edqvist ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jiong Ma ◽  
Chunxia Zhou ◽  
Xuejun Chen

Abstract Background Hedgehog (Hh) signaling pathway, which is essential for cell proliferation and differentiation, is noted to be aberrantly activated in tumor from increasing studies in recent years. MicroRNAs (miRNAs) as an important non-coding RNA in cells have been proven to possess a regulatory role specific to the Hh signaling pathway. Here, in vitro and in vivo cellular/molecular experiments were adopted to clarify the regulatory mechanism linking miR-636 to the Hh signaling pathway in ovarian cancer (OVC). Methods Protein–protein interaction analysis was performed to identify the hub gene in the Hh pathway. TargetScan database was used to predict the potential upstream regulators for Gli2. qRT-PCR was performed to test the expression of miR-636, while Western blot was conducted to detect the expression of proteins related to the Hh pathway and epithelial-mesenchymal transition (EMT). For cell functional experiments, HO-8910PM OVC cell line was used. MTT assay and wound healing assay were used to measure the effect of miR-636 on cell proliferation and migration. Flow cytometry was carried out to examine the effect of miR-636 on cell cycle, and Western blot was used to identify the change in expression of Hh and EMT-related proteins. Dual-luciferase reporter gene assay was implemented to detect the targeting relationship between miR-636 and Gli2. Xenotransplantation models were established for in vivo examination. Results Gli2 was identified as the hub gene of the Hh pathway and it was validated to be regulated by miR-636 based on the data from TargetScan and GEO databases. In vitro experiments discovered that miR-636 was significantly lowly expressed in OVC cell lines, and overexpressing miR-636 significantly inhibited HO-8910PM cell proliferation, migration and induced cell cycle arrest in G0/G1 phase, while the inhibition of miR-636 caused opposite results. Dual-luciferase reporter gene assay revealed that Gli2 was the target gene of miR-636 in OVC. Besides, overexpressed miR-636 decreased protein expression of Gli2, and affected the expression of proteins related to the Hh signaling pathway and EMT. Rescue experiments verified that overexpression of Gli2 reversed the inhibitory effect of miR-636 on HO-8910PM cell proliferation and migration, and attenuated the blocking effect of miR-636 on cell cycle. The xenotransplantation experiment suggested that miR-636 inhibited cell growth of OVC by decreasing Gli2 expression. Besides, overexpressing Gli2 potentiated the EMT process of OVC cells via decreasing E-cadherin protein expression and increasing Vimentin protein expression, and it reversed the inhibitory effect of miR-636 on OVC cell proliferation in vivo. Conclusion miR-636 mediates the activation of the Hh pathway via binding to Gli2, thus inhibiting EMT, suppressing cell proliferation and migration of OVC. Trial registration: The experimental protocol was established, according to the ethical guidelines of the Helsinki Declaration and was approved by the Human Ethics Committee of The Second Affiliated hospital of Zhejiang University School of Medicine (IR2019001235). Written informed consent was obtained from individual or guardian participants.


Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 629
Author(s):  
Massimo Pancione ◽  
Luigi Cerulo ◽  
Andrea Remo ◽  
Guido Giordano ◽  
Álvaro Gutierrez-Uzquiza ◽  
...  

Metastasis is a process by which cancer cells escape from the location of the primary tumor invading normal tissues at distant organs. Chromosomal instability (CIN) is a hallmark of human cancer, associated with metastasis and therapeutic resistance. The centrosome plays a major role in organizing the microtubule cytoskeleton in animal cells regulating cellular architecture and cell division. Loss of centrosome integrity activates the p38-p53-p21 pathway, which results in cell-cycle arrest or senescence and acts as a cell-cycle checkpoint pathway. Structural and numerical centrosome abnormalities can lead to aneuploidy and CIN. New findings derived from studies on cancer and rare genetic disorders suggest that centrosome dysfunction alters the cellular microenvironment through Rho GTPases, p38, and JNK (c-Jun N-terminal Kinase)-dependent signaling in a way that is favorable for pro-invasive secretory phenotypes and aneuploidy tolerance. We here review recent data on how centrosomes act as complex molecular platforms for Rho GTPases and p38 MAPK (Mitogen activated kinase) signaling at the crossroads of CIN, cytoskeleton remodeling, and immune evasion via both cell-autonomous and non-autonomous mechanisms.


1994 ◽  
Vol 12 (1) ◽  
pp. 107-118 ◽  
Author(s):  
A Van Bael ◽  
R Huygen ◽  
B Himpens ◽  
C Denef

ABSTRACT We have studied the effect of LHRH and neuropeptide Y (NPY) on prolactin (PRL) mRNA levels in pituitary reaggregate cell cultures from 14-day-old female rats, by means of in situ hybridization and Northern blot analysis. As estimated by computer-image analysis, addition of LHRH on day 5 in culture for 40 h resulted in a 37% increase in the total cytoplasmic areas of cells containing PRL mRNA, visualized using a digoxigenin-labelled PRL cRNA. The size of individual PRL-expressing cells was not influenced, nor was the content of PRL mRNA per cell. A similar effect of LHRH was found by dot blot hybridization of extracted RNA. PRL mRNA levels were not affected by NPY. LHRH induced a 29% increase in the number of PRL mRNA-expressing cells processing through the S phase of the cell cycle, visualized by the incorporation of [3H]thymidine ([3H]T) into DNA over 16 h. The fraction of [3H]T-labelled cells was 10–12% of the total cell population. NPY did not influence the number of [3H]T-positive cells expressing PRL mRNA, but completely blocked the effect of LHRH on the latter population. The present data suggest that LHRH, probably via a paracrine action of gonadotrophs, stimulates the recruitment of new lactotrophs, an action which is negatively modulated by NPY. Since the magnitude of this effect was the same in the total pituitary cell population as in cells processing through the S phase of the cell cycle and presumably mitosis, recruitment of lactotrophs seems to be based on differentiation of progenitor or immature cells into PRL-expressing cells, rather than on a mitogenic action on pre-existing lactotrophs alone.


Sign in / Sign up

Export Citation Format

Share Document