scholarly journals Evaluation of Physical and Chemical Properties of Pomelo (Citrus grandis L.) Essential Oil using Steam Distillation Process

2020 ◽  
Vol 32 (6) ◽  
pp. 1433-1436 ◽  
Author(s):  
Tran Thi Kim Ngan ◽  
Nguyen Van Muoi ◽  
Pham Minh Quan ◽  
Mai Huynh Cang

This study attempted the extraction of essential oils from the peels of pomelo (Citrus grandis L.) grown in Ben Tre province, Vietnam through hydrodistillation method. In addition, the chemical composition and physio-chemical properties of the essential oils were reported. The results showed that the extraction yield of the extraction process achieved about 1.67%. The physico-chemical index of essential oils is determined by specific gravity (0.8572 g/cm3), acid index (0.3556 mg KOH/g), ester index (2.4216 mg KOH/g), and refractive index (1.476). The GC-MS analyses of the oil indicated the component with highest content in the oil was α-limonene (96.491%), followed by α-pinene (0.686%), β-pinene (0.248%), β-myrcene (1.644%), α-phellandrene (0.793%) and β-cis-ocimene (0.138%). These results suggested that wastes from fruit peeling process can be converted into a new material source with great potential for industrial use.

2021 ◽  
Vol 17 ◽  
Author(s):  
Giuseppe Maria Merone ◽  
Angela Tartaglia ◽  
Enrica Rosato ◽  
Cristian D’Ovidio ◽  
Abuzar Kabir ◽  
...  

Background: Ionic liquids (ILs) are a unique class of compounds consisting exclusively of cations and anions that possess distinctive properties such as low volatility, high thermal stability, miscibility with water and organic solvents, electrolytic conductivity and non-flammability. Ionic liquids have been defined as "design solvents", because it is possible to modify their physical and chemical properties by appropriately choosing cations and anions, in order to meet the specific characteristics based on their potential application. Introduction: Due of their tunable nature and properties, ILs are considered as the perfect candidates for numerous applications in analytical chemistry including sample preparation, stationary phases in liquid or gas chromatography, additives in capillary electrophoresis, or in mass spectrometry for spectral and electrochemical analysis. In the last years, the number of publications regarding ILs has rapidly increased, highlighting the broad applications of these compounds in various fields of analytical chemistry. Results: This review first described the main physico-chemical characteristics of ionic liquids, and subsequently reported the various applications in different subdisciplines of analytical chemistry, including the extraction procedure and separation techniques. Furthermore, in each paragraph the most recent applications of ionic liquids in the food, environmental, biological, etc. fields have been described. Conclusion: Overall, the topic discussed highlights the key role of ionic liquids in analytical chemistry, giving hints for their future applications in chemistry but also in biology and medicine.


2021 ◽  
pp. 10-24
Author(s):  
C. R. Abah ◽  
C. N. Ishiwu ◽  
J. E. Obiegbuna ◽  
E. F. Okpalanma ◽  
C. S. Anarado

Quality cassava(Manihotesculentus, Crantz) flour is often influenced by process variables such as slice weight and soaking time which may affect its nutritional quality. In this study, the effect of process variables (slice weight and soaking time) on quality of cassava flour was carried out. Cassava root was peeled, washed and cut into varied sizes (25.86 - 54.14 g) and soaked at varied time (7.03 - 40.97 h). The proximate composition, physical and chemical properties of the flour were carried out using standard methods. The result in our findings showed that slice weight and soaking time had significant increase (p<0.05) on the proximate and physico-chemical properties of the flour.The amylose and amylopectin content of the flour increased with increasing soaking time while the hydrogen cyanide content decreased with increase in soaking time. Overall, the quality cassava flour displayed desirable properties for its incorporation into baked goods.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Christian Haynl ◽  
Jitraporn Vongsvivut ◽  
Kai R. H. Mayer ◽  
Hendrik Bargel ◽  
Vanessa J. Neubauer ◽  
...  

Abstract Our understanding of the extraordinary mechanical and physico-chemical properties of spider silk is largely confined to the fibers produced by orb-weaving spiders, despite the diversity of foraging webs that occur across numerous spider families. Crab spiders (Thomisidae) are described as ambush predators that do not build webs, but nevertheless use silk for draglines, egg cases and assembling leaf-nests. A little-known exception is the Australian thomisid Saccodomus formivorus, which constructs a basket-like silk web of extraordinary dimensional stability and structural integrity that facilitates the capture of its ant prey. We examined the physical and chemical properties of this unusual web and revealed that the web threads comprise microfibers that are embedded within a biopolymeric matrix containing additionally longitudinally-oriented submicron fibers. We showed that the micro- and submicron fibers differ in their chemical composition and that the web threads show a remarkable lateral resilience compared with that of the major ampullate silk of a well-investigated orb weaver. Our novel analyses of these unusual web and silk characteristics highlight how investigations of non-model species can broaden our understanding of silks and the evolution of foraging webs.


2013 ◽  
Vol 816-817 ◽  
pp. 65-69
Author(s):  
Yi Zhang

New materials play an important part in today high and new technology.Superconducting nanomaterial has become the most vibrant in new material research due to its unique physical and chemical properties. This paper focuses on how small-size effect affects superconducting transition temperature, and summarizes the concrete preparation methods of superconducting nanomaterials, hoping to provide a reference for material researchers.


2014 ◽  
Vol 496-500 ◽  
pp. 2416-2420 ◽  
Author(s):  
Yue Lei ◽  
Lun Li

Mostly used in packing and outdoor facilities in the early stage, wood-plastic composites are gradually applied to other design sectors thanks to their advantageous features including cost efficiency, environmental protection, recyclability as well as being easy to be processed and fabricated. The application of this kind of green and new material in the exhibition design sector will be beneficial to developing the standardized structure and rapid fabrication in the exhibition design to save the project construction material costs and shorten erection time. In this article, the feasibility and ecological significance of using wood-plastic composites in the exhibition sector are explored from the aspects of the physical and chemical properties of the wood-plastic composites as well as their processing methods.


2019 ◽  
Vol 9 (1) ◽  
pp. 52-56
Author(s):  
Sergey V. STEPANOV ◽  
Olga N. PANFILOVA ◽  
Kristina K. ADDUGAFFAROVA

The main physical and chemical parameters of a new sorbent developed on the basis of the minerals of the Samara region: clays, peat and dolomite are considered. The particle size of the clay after grinding at the stage of preliminary preparation was less than 1 nm, which relates them to highly dispersed materials. A chemical analysis of the composition of the components showed a high content of silicon and aluminum oxides, which possess ion exchange properties, and also made it possible to assign clays to montmorillonite rocks. The modification of the sorbent was carried out by thermal method. The density of the finished sample was 1.8 g / cm3. The method of scanning electron microscopy showed that the structure of the finished sample belongs to spongy bodies. The method of IR spectrometry confirmed the presence of functional groups in the crystal lattice of the sorbent, which cause not only the physical, but also the ion exchange and chemical nature of sorption.


2013 ◽  
Vol 29 (1) ◽  
pp. 59-67 ◽  
Author(s):  
J.P. Noudogbessi ◽  
G.A. Alitonou ◽  
T. Djenontin ◽  
G. Figueredo ◽  
G. Figueredo ◽  
...  

2015 ◽  
Vol 1107 ◽  
pp. 267-271
Author(s):  
Sodipo Bashiru Kayode ◽  
Azlan Abdul Aziz

The science of core-shell nanoparticles requires investigation into several physical and chemical properties of the composite nanoparticles. Unlike the conventional sol-gel or the reverse microemulsion micelle method, we presented here a non-seeded process of encapsulating superparamagnetic magnetite nanoparticles (SPMN) with silica. Physico-chemical analysis of the product was used to confirm the result of the coating procedure. Colloidal suspension of SPMN and silica nanoparticles were synthesised through coprecipitation method and modified Stöber method respectively. Afterwards, both colloidal suspensions of SPMN and silica nanoparticles were sonicated to encapsulate the SPMN with silica. Elemental mapping of the composite particles with electron spectroscopy imaging (ESI) confirmed the core-shell micrograph of the SPMN and silica. The X-ray diffraction pattern (XRD) showed the silica shell to be in amorphous form. FTIR analysis further confirmed the chemical properties of the product to be silica coated SPMN.


2014 ◽  
Vol 896 ◽  
pp. 153-158
Author(s):  
Anis Kristiani ◽  
Kiky C. Sembiring ◽  
Fauzan Aulia ◽  
Joddy Arya Laksmono ◽  
Silvester Tursiloadi ◽  
...  

A series of sulfated zirconia was prepared through sol gel method in alcohol medium. Porosity of the catalyst was developed in two different methods, which were immersion of cetyltrimethyl ammonium chloride (CTAC) surfactant as templating agent and Supercritical Fluid Extraction (SFE). The physico-chemical properties of the catalysts were characterized by Thermal Gravimetric-Differential Thermal Analysis (TG-DTA), X-ray Diffraction (XRD), Brunauer-Emmett-Teller (BET) and Barret-Joyner-Halenda (BJH) and gravimetry method for acidity measurement following by the adsorption of organic bases. The characterization results show that different method of immersing CTAC surfactant and SFE affecting physical and chemical properties, i.e. crystalinity, surface area, pore size, pore volume and acidity.


Sign in / Sign up

Export Citation Format

Share Document