scholarly journals Modelling and Optimizing the Solvent Extraction of Cadmium from Phosphoric Acid using Experimental Design

2021 ◽  
Vol 33 (3) ◽  
pp. 637-643
Author(s):  
K. Berkalou ◽  
A. Nounah ◽  
H. Chaair ◽  
M. Khamar ◽  
R. Boussen ◽  
...  

The removal of cadmium from phosphoric acid was carried out using the solvent extraction process, taking into account factors such as pH, concentration of the extracting agent [EA], organic phase/aqueous phase (O/A) ratio, stirring time and stirring rate. In order to study the effect of these involved factors and their interactions on the extraction percentage of cadmium, a composite central design (CCD) of 24 experiments was adopted. An empirical model was developed and validated by applying ANOVA analysis. The graphical representation of this model in the variable space allowed to determine the optimal conditions of these factors. The extraction of cadmium from phosphoric acid reached a percentage of the order of 98%, under the following conditions: pH = 3, [EA] = 10-2 M, O/A = 1.1, stirring time 90 min, stirring rate 800 rpm.

2019 ◽  
Vol 19 (4) ◽  
pp. 865
Author(s):  
Kris Tri Basuki ◽  
Niken Siwi Pamungkas

Liquid extraction of Y that containing Dy using bis-2-Ethylhexyl phosphoric acid (D2EHPA) extractant has been conducted. The purpose of this study is to determine the optimum parameter in a separation process that uses membrane emulsion. As the aqueous phase, a mixed solution of Y2O3 and Gd2O3 containing Y 10 g/L and Gd 250 mg/L was used. D2EHPA as extractant or organic phase with a variety of concentration was diluted with kerosene. Emulsifier Span-80 was used to make an emulsion of membrane liquid. The internal phase of the liquid membrane used 0.20–0.50 M nitric acid, and the external phase used 1–5 M nitric acid. The studied parameters were extractant concentration, stirring speed, stirring time, and the ratio of the internal and external phase. X-Ray Fluorescence (XRF) was used for the analysis of Y and Dy. The analysis of Y and Dy used the X-Ray Fluorescence (XRF). The optimization results of the extraction process of Y with emulsion membrane using D2EHPA extractants obtained the following conclusions: the optimum stirring rate was 8500 rpm, the D2EHPA concentration was 4.5% in kerosene, the internal concentration was 0.45 M nitric acid, the external concentration was 4 M nitric acid, the stirring time was 10 min that fixed stirring rate was 500 rpm, and the ratio of internal and external phase was 1:1. This conditions acquired a separation factor (SF) Y-Gd of 7.57.


2001 ◽  
Vol 7 (2) ◽  
pp. 177-182 ◽  
Author(s):  
E. Ibanez ◽  
S. Lopez-Sebastian ◽  
J. Fernandez ◽  
J. Tabera ◽  
J. M. Bueno ◽  
...  

The effect of the CO2 quality (mainly related to CO2 content) in the antioxidant activity of rosemary extracts deodorized by using a supercritical fluid extraction process is analyzed. A Taguchi experimental design was used to study the influence of the CO2 quality on the antioxidant activity of the rosemary dearomatized extracts. The antioxidant activity of the rosemary extracts obtained in optimal conditions was tested with sunflower oil.


Metals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 790
Author(s):  
Xuejiao Cao ◽  
Ting-an Zhang ◽  
Weiguang Zhang ◽  
Guozhi Lv

The solvent extraction of scandium by the mixture of di-(2-ethylhexyl) phosphate (D2EHPA) and tri-n-butyl phosphate (TBP) has been investigated in the acidic leaching solution of vanadium slag. Thermodynamic analysis of the species distribution diagrams on the Sc-S-H2O system showed that scandium mainly exists as Sc3+ and Sc(SO4)+, and sulfur mainly exists as HSO4− in the actual leaching solution of vanadium slag (pH = −0.75). The extraction process was studied to optimize various parameters such as the extractant concentration, dosage of TBP, phase ratio, and stirring speed. The results indicated that 83.64% of scandium and less than 2% of co-extracted elements were extracted under optimal conditions. Then, over 95% of the co-extracted elements and less than 1.1% of scandium were scrubbed from the loaded organic phase by 4.0 mol/L of HCl. Finally, 87.20% of scandium was stripped with 2 mol/L of NaOH and 1 mol/L of NaCl at a stripping O/A of 1:1.


Minerals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 61
Author(s):  
Wenjie Zhang ◽  
Xian Xie ◽  
Xiong Tong ◽  
Yunpeng Du ◽  
Qiang Song ◽  
...  

Solvent extraction is the most widely used method for separation and purification of rare earth elements, and organic extractants such as di(2-ethylhexyl) phosphoric acid (P204) and di(1-methyl-heptyl) methyl phosphonate (P350) are most commonly used for industrial applications. However, the presence of impurity ions in the feed liquid during extraction can easily emulsify the extractant and affect the quality of rare earth products. Aluminum ion is the most common impurity ion in the feed liquid, and it is an important cause of emulsification of the extractant. In this study, the influence of aluminum ion was investigated on the extraction of light rare earth elements by the P204-P350 system in hydrochloric acid medium. The results show that Al3+ competes with light rare earths in the extraction process, reducing the overall extraction rate. In addition, the Al3+ stripping rate is low and there is continuous accumulation of Al3+ in the organic phase during the stripping process, affecting the extraction efficiency and even causing emulsification. The slope method and infrared detection were utilized to explore the formation of an extraction compound of Al3+ and the extractant P204-P350 that entered the organic phase as AlCl[(HA)2]2P350(o).


Author(s):  
Sara Díaz ◽  
Antonio N. Benítez ◽  
Sara Ramírez-Bolaños ◽  
Lidia Robaina ◽  
Zaida Ortega

AbstractThe aim of this work is the optimization of phenolic compound extraction from three by-products of banana crops (rachis, discarded banana, and banana’s pseudostem pulp), as a way to valorize them through a green extraction process. The influence of the temperature and aqueous ethanol concentration (Et-OH) on extract properties (total phenol content (TPC) and antioxidant activity) was firstly analyzed. 78 ℃ and ethanol concentrations close to 50% yielded the best results for the three materials. The equations obtained by the response surface methodology gave a satisfactory description of the experimental data, allowing optimizing the extraction conditions. Under optimized conditions, time influence was then assessed, although this parameter seemed not influence results. Among the three by-products, rachis extract (60% Et-OH, 78 ℃, and 30 min) presented the highest TPC (796 mg gallic acid/100 g of dried material) and antioxidant activity (6.51 mg Trolox equivalents/g of dried material), followed by discarded banana, and pseudostem pulp. Under the optimal conditions, experiments were performed at a larger scale, allowing to determine the extraction yields (EY) and to characterize the extracts. The highest EY was obtained for the rachis (26%), but the extract with the highest activity was obtained for discarded banana (50% Et-OH, 78 ℃, and 60 min), which presented a TPC of 27.26 mg/g extract corresponding to 54.59 mg Trolox equivalents/g extract. This study contributes to the valorization of banana crops residues as a source of polyphenolic compounds with bioactive functions that can be extracted under economic extraction conditions. Graphical abstract


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 515
Author(s):  
Wei-Sheng Chen ◽  
Shota Mesaki ◽  
Cheng-Han Lee

Tin anode slime is a by-product of the tin electrolytic refining process. This study investigated a route to separate Sn, Sb, Bi, and Cu from tin anode slime after leaching with hydrochloric acid. In the solvent extraction process with tributyl phosphate, Sb and Sn were extracted into the organic phase. Bi and Cu were unextracted and remained in the liquid phase. In the stripping experiment, Sb and Sn were stripped and separated with HCl and HNO3. Bi and Cu in the aqueous phase were also separated with chemical precipitation procedure by controlling pH value. The purities of Sn, Sb, Cu solution and the Bi-containing solid were 96.25%, 83.65%, 97.51%, and 92.1%. The recovery rates of Sn, Sb, Cu, and Bi were 76.2%, 67.1%, and 96.2% and 92.4%.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2542
Author(s):  
Karol Ulatowski ◽  
Radosław Jeżak ◽  
Paweł Sobieszuk

(1) The generation of nanobubbles by electrolysis is an interesting method of using electrical energy to form bubble nuclei, effectively creating a multiphase system. For every process, the effectiveness of nanobubble generation by electrolysis depends on various process parameters that impact should be determined. (2) In this work, the electrolytic generation of hydrogen and oxygen bubbles was performed in a self-built setup, in which a Nafion membrane separated two chambers. The generation of bubbles of both gases was investigated using Box–Behnken experimental design. Three independent variables were salt concentration, current density, and electrolysis time, while the dependent variables were Sauter diameters of generated bubbles. An ANOVA analysis and multivariate regression were carried out to propose a statistical and power model of nanobubble size as a process parameter function. (3) The generation of bubbles of hydrogen and oxygen by electrolysis showed that different factors or their combinations determine their size. The results presented in this work proved to be complementary to previous works reported in the literature. (4) The Sauter diameter of bubbles increases with salt concentration and stays constant with increasing current density in investigated range. The proposed correlations allow the Sauter diameters of nanobubbles generated during electrolysis to be predicted.


Sign in / Sign up

Export Citation Format

Share Document