scholarly journals Effect of NaBr on the Structural, Thermal and Mechanical Properties of HPMC:NaBr Composite Films

2022 ◽  
Vol 34 (2) ◽  
pp. 305-310
Author(s):  
Sunil Kumar ◽  
S. Raghu ◽  
T. Demappa ◽  
J. Sannappa

The hydroxypropyl methylcellulose (HPMC):sodium bromide (NaBr) composite films were prepared using different concentrations by solution casting method. The crystalline percentage of the pure HPMC was reduced from 74% to 60% upon the incorporation of 0.7 wt.% of NaBr salt, which suggests that the NaBr salt disrupted the host polymer crystalline phase. The two-phase microstructure in the morphological images reflects the phase separation at different concentrations of dopant. The functional studies revealed the considerable variation of intensity and the shift of peaks due to the action of NaBr in the host polymer matrix. The HPMC showed a large increase in the glass transition temperature (Tg) from 65 ºC to 86 ºC and simultaneously reduction in the weight percent loss was observed. The mechanical analysis revealed that the added dopant has a significant effect on the mechanical properties of HPMC.

2021 ◽  
Vol 36 (2) ◽  
pp. 137-143
Author(s):  
S. A. Awad

Abstract This paper aims to describe the thermal, mechanical, and surface properties of a PVA/HPP blend whereby the film was prepared using a solution casting method. The improvements in thermal and mechanical properties of HPP-based PVA composites were investigated. The characterization of pure PVA and PVA composite films included tensile tests, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The results of TGA and DSC indicated that the addition of HPP increased the thermal decomposition temperature of the composites. Mechanical properties are significantly improved in PVA/HPP composites. The thermal stability of the PVA composite increased with the increase of HPP filler content. The tensile strength increased from 15.74 ± 0.72 MPa to 27.54 ± 0.45 MPa and the Young’s modulus increased from 282.51 ± 20.56 MPa to 988.69 ± 42.64 MPa for the 12 wt% HPP doped sample. Dynamic mechanical analysis (DMA) revealed that at elevated temperatures, enhanced mechanical properties because of the presence of HPP was even more noticeable. Morphological observations displayed no signs of agglomeration of HPP fillers even in composites with high HPP loading.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
H. Somashekarappa ◽  
Y. Prakash ◽  
K. Hemalatha ◽  
T. Demappa ◽  
R. Somashekar

The aim of this present work is to investigate the effect of plasticizers like Sorbitol on microstructural and mechanical properties of hydroxypropyl methylcellulose (HPMC) and Polyvinylpyrrolidone (PVP) blend films. The pure blend and plasticized blend films were prepared by solution casting method and investigated using wide angle X-ray scattering (WAXS) method. WAXS analysis confirms that the plasticizers can enter into macromolecular blend structure and destroy the crystallinity of the films. FTIR spectra show that there are a shift and decrease in the intensity of the peaks confirming the interaction of plasticizer with the blend. Mechanical properties like tensile strength and Young’s Modulus decrease up to 0.6% of Sorbitol content in the films. Percentage of elongation at break increases suggesting that the plasticized films are more flexible than pure blend films. These films are suitable to be used as environmental friendly and biodegradable packaging films.


2009 ◽  
Vol 79-82 ◽  
pp. 417-420 ◽  
Author(s):  
Hong Xia Jiang ◽  
Qing Qing Ni ◽  
Toshiaki Natsuki

Carbon nanotubes (CNTs) reinforced natural rubber (NR) composites with the CNT contents of 1, 3, 5, 10 and 20 wt% were synthesized using a solution casting method. The morphology of the composites was observed by scanning electron microscopy and Fourier transform infrared spectroscopy. It was found that CNTs were well distributed into NR and there was an excellent interface between CNTs and natural rubber. The mechanical properties of the composites were investigated by dynamic mechanical analysis (DMA) test and tensile test. It was found that the increment of storage modulus of NR/CNT composites was about 0.42 MPa/wt% in the rubbery state which agreed well with the results of tensile test. The large modulus increment confirmed the reinforcement effect of carbon nanotubes.


Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2018
Author(s):  
Muhammad Samsuri ◽  
Ihsan Iswaldi ◽  
Purba Purnama

Stereocomplexation is one of several approaches for improving polylactide (PLA) properties. The high molecular weight of poly L-lactide (PLLA) and poly D-lactide (PDLA) homopolymers are a constraint during the formation of stereocomplex PLAs (s-PLAs). The presence of s-PLA particles in PLA PLLA/PDLA blends can initiate the formation of s-PLA crystalline structures. We used the solution casting method to study the utilization of s-PLA materials from high molecular weight PLLA/PDLA blends for increasing s-PLA formation. The s-PLA particles initiated the formation of high molecular weight PLLA/PDLA blends, obtaining 49.13% s-PLA and 44.34% of the total crystalline fraction. In addition, the mechanical properties were enhanced through s-PLA crystalline formation and the increasing of total crystallinity of the PLLA/PDLA blends. The s-PLA particles supported initiation for s-PLA formation and acted as a nucleating agent for PLA homopolymers. These unique characteristics of s-PLA particles show potential to overcome the molecular weight limitation for stereocomplexation of PLLA/PDLA blends.


2003 ◽  
Vol 791 ◽  
Author(s):  
P. C. Ramamurthy ◽  
W. R. Harrell ◽  
R. V. Gregory ◽  
B. Sadanadan ◽  
A. M. Rao

ABSTRACTHigh molecular weight polyaniline / multi-walled carbon nanotube composite films were fabricated using solution processing. Composite films with various weight percentages of multiwalled carbon nanotubes were fabricated. Physical properties of these composites were analyzed by thermogravimetric analysis, tensile testing, and scanning electron microscopy. These results indicate that the addition of multiwalled nanotubes to polyaniline significantly enhances the mechanical properties of the films. In addition, metal–semiconductor (composite) (MS) contact devices were fabricated, and it was observed that the current level in the films increased with increasing multiwalled nanotube content. Furthermore, it was observed that polyaniline containing one weight percent of carbon nanotubes appears to be the most promising composition for applications in organic electronic devices.


2018 ◽  
Vol 38 (3) ◽  
pp. 271-279 ◽  
Author(s):  
Suvendu Padhi ◽  
P. Ganga Raju Achary ◽  
Nimai C. Nayak

AbstractHalloysite nanotubes (HNTs) were modified by γ-methacryloxypropyltrimethoxysilane (γ-MPS) as it interacts with the aluminol and silanol groups of HNTs present at the edges and surfaces of HNTs. The polymer composites were prepared by means of the solution casting method with ethylene-vinyl acetate (EVA) copolymer having 45% vinyl acetate (VA) content with different weight percent of modified HNTs (m-HNTs). The modification of the HNTs by γ-MPS increases the interfacial and inter-tubular interactions and the degree of dispersion of the HNTs within the EVA matrix which manifest from increase in crosslinking density. The mechanical properties such as tensile strength, tensile modulus and tear strength of nanocomposites were found to increase because of m-HNT. The glass transition temperature (Tg) and the crystalline percentage decreases for EVA/m-HNT nanocomposites were due to the strong interaction between EVA matrix and filler. Also, the EVA/m-HNT nanocomposites exhibited better thermal stability due to the strong inter-tubular interaction.


e-Polymers ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 70-78 ◽  
Author(s):  
Renbo Wei ◽  
Qian Xiao ◽  
Chenhao Zhan ◽  
Yong You ◽  
Xuefei Zhou ◽  
...  

AbstractBoron nitride (BN) coated with sulfonated poly-arylene ether nitrile (SPEN) (BN@SPEN) was used as additive to enhance the thermal conductivity of polyarylene ether nitrile. BN@SPEN was prepared by coating BN micro-platelets with SPEN through ultrasonic technology combined with the post-treatment bonding process. The prepared BN@SPEN was characterized by FTIR, TGA, SEM and TEM, which confirmed the successful coating of BN micro-platelets. The obtained BN@SPEN was introduced into the PEN matrix to prepare composite films by a solution casting method. The compatibility between BN and PEN matrix was studied by using SEM observation and rheology measurement. Furthermore, thermal conductivity of BN@SPEN/PEN films were carefully characterized. Thermal conductivity of BN@SPEN/PEN films was increased to 0.69 W/(m⋅K) at 20 wt% content of BN@SPEN, having 138% increment comparing with pure PEN.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 755
Author(s):  
Lingfei Li ◽  
Qiu Sun ◽  
Xiangqun Chen ◽  
Yongjun Xu ◽  
Zhaohua Jiang

In this work, poly(1-butene) (PB-1) composite films with multi-walled carbon nanotubes (MWCNT) were prepared by a solution casting method. The relationship between the dielectric properties and the crystal transformation process of the films was investigated. It was indicated that there were two crystal forms of I and II of PB-1 during the solution crystallization process. With the prolongation of the phase transition time, form II was converted into form I. The addition of the conductive filler (MWCNT) accelerated the rate of phase transformation and changed the nucleation mode of PB-1. The presence of crystal form I in the system increased the breakdown strength and the dielectric constant of the films and reduced the dielectric loss, with better stability. In addition, the dielectric constant and the dielectric loss of the MWCNT/PB-1 composite films increased with the addition of MWCNT, due to the interfacial polarization between MWCNT and PB-1 matrix. When the mass fraction of the MWCNT was 1.0%, the composite film had a dielectric constant of 43.9 at 25 °C and 103 Hz, which was 20 times that of the original film.


2015 ◽  
Vol 815 ◽  
pp. 89-93 ◽  
Author(s):  
Siti Farhana Hisham ◽  
Siti Hajar Kasim ◽  
Azreena Mastor ◽  
Siti Noorzidah Mohd Sabri ◽  
Syazana Abu Bakar ◽  
...  

The aim of this study was to investigate the effects of covalent and ionic cross-linked reactions which were respectively done by using genipin and tripolyphosphate (tpp), on the structure and mechanical properties of chitosan film. Both cross-linked and uncross-linked films were prepared by solution casting method and characterized. FTIR spectra showed no characteristic of –OCH3 peak from genipin at 1444 cm-1 which resulted by a new covalent bonding in chitosan film. Reduction in absorption intensity at 1560 cm-1 wave number in chitosan cross-linked tpp films were due to the presence of ionic interaction between the positive charged of amino group in chitosan and negatively charged of phosphate group by tpp. The pattern area from the XRD results showed that the covalent cross-linked had significantly changed on the chitosan`s degree of crystallinity. The water contact angle on the surface of covalent/ionic cross-linked chitosan film reached the highest θ at 82.72° which indicated more hydrophobic properties was formed. Covalent/ionic cross-linked chitosan also showed the higher mechanical strength with average tensile stress value at 71.25 MPa. All finding results demonstrated that cross-linked modification on the chitosan film had successfully reduced the film’s hydrophilicity and increased the mechanical properties of the film.


Sign in / Sign up

Export Citation Format

Share Document