Therapeutic Potential of Biologically Active Resin Glycoside Natural Products

2018 ◽  
Author(s):  
Ehesan U. Sharif
2021 ◽  
Vol 28 ◽  
Author(s):  
Jiahua Cui ◽  
Jiajun Qian ◽  
Larry Ming-Cheung Chow ◽  
Jinping Jia

Background: The proposed central role of cancer stem cells (CSCs) in tumor development has been extended to explain the diverse oncologic phenomena such as multidrug resistance, metastasis and tumor recurrence in clinics. Due to the enhanced expression of ATP-binding cassette transporters and anti-apoptotic factors, stagnation on G0 phase and the strong ability of self-renewal, the CSCs were highly resistant to clinical anticancer drugs. Therefore, the discovery of new drug candidates that could effectively eradicate cancer stem cells afforded promising outcomes in cancer therapy. Introduction: Natural products and their synthetic analogues are a rich source of biologically active compounds and several of them have already been recognized as potent CSCs killers. We aim to provide a collection of recently identified natural products that suppressed the survival of the small invasive CSC populations and combated the drug resistance of these cells in chemotherapy. Results and Conclusion: These anti-CSCs natural products included flavonoids, stilbenes, quinones, terpenoids, polyketide antibiotics, steroids and alkaloids. In the present review, we highlighted the therapeutic potential of natural products and their derivatives against the proliferation and drug resistance of CSCs, their working mechanisms and related structure-activity relationships. Meanwhile, in this survey, several natural products with diverse cellular targets such as the naphthoquinone shikonin and the stilbene resveratrol were characterized as promising lead compounds for future development.


Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 649 ◽  
Author(s):  
Mariangela Marrelli ◽  
Giancarlo Statti ◽  
Filomena Conforti

Wild foods constitute an essential component of people’s diets around the world. According to the Food and Agriculture Organization (FAO), over 100 million people in the EU consume wild foods, while 65 million collect some form of wild food themselves. The Mediterranean basin is a biodiversity hotspot of wild edible species. Nowadays, due to the renewed interest in alimurgic plants and the recent findings on the beneficial role of their phytochemical constituents, these species have been defined as “new functional foods”. Research on natural products has recently regained importance with the growing understanding of their biological significance. Botanical food supplements marketed for weight and fat loss in obese subjects will be one of the most important items in marketed nutraceuticals. The aim of this report was to review the phytochemical compounds of Mediterranean wild edible species and their therapeutic potential against obesity and its related disorders. Results on the in vitro and in vivo activity of the most interesting plant extracts and their bioactive components are presented and discussed. The most interesting discoveries on their mechanisms of action are reported as well. Overall, this contribution highlights the importance and beneficial health roles of wild edible species.


Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 589 ◽  
Author(s):  
Artem Blagodatski ◽  
Antonina Klimenko ◽  
Lee Jia ◽  
Vladimir L. Katanaev

The Wnt signaling is one of the major pathways known to regulate embryonic development, tissue renewal and regeneration in multicellular organisms. Dysregulations of the pathway are a common cause of several types of cancer and other diseases, such as osteoporosis and rheumatoid arthritis. This makes Wnt signaling an important therapeutic target. Small molecule activators and inhibitors of signaling pathways are important biomedical tools which allow one to harness signaling processes in the organism for therapeutic purposes in affordable and specific ways. Natural products are a well known source of biologically active small molecules with therapeutic potential. In this article, we provide an up-to-date overview of existing small molecule modulators of the Wnt pathway derived from natural products. In the first part of the review, we focus on Wnt pathway activators, which can be used for regenerative therapy in various tissues such as skin, bone, cartilage and the nervous system. The second part describes inhibitors of the pathway, which are desired agents for targeted therapies against different cancers. In each part, we pay specific attention to the mechanisms of action of the natural products, to the models on which they were investigated, and to the potential of different taxa to yield bioactive molecules capable of regulating the Wnt signaling.


Planta Medica ◽  
2015 ◽  
Vol 81 (11) ◽  
Author(s):  
T Grkovic ◽  
R Akee ◽  
J Evans ◽  
JM Collins ◽  
B O'Keefe

2020 ◽  
Vol 25 (46) ◽  
pp. 4893-4913 ◽  
Author(s):  
Fan Cao ◽  
Jie Liu ◽  
Bing-Xian Sha ◽  
Hai-Feng Pan

: Inflammatory bowel disease (IBD) is a chronic, elusive disorder resulting in relapsing inflammation of intestine with incompletely elucidated etiology, whose two representative forms are ulcerative colitis (UC) and Crohn’s disease (CD). Accumulating researches have revealed that the individual genetic susceptibility, environmental risk elements, intestinal microbial flora, as well as innate and adaptive immune system are implicated in the pathogenesis and development of IBD. Despite remarkable progression of IBD therapy has been achieved by chemical drugs and biological therapies such as aminosalicylates, corticosteroids, antibiotics, anti-tumor necrosis factor (TNF)-α, anti-integrin agents, etc., healing outcome still cannot be obtained, along with inevitable side effects. Consequently, a variety of researches have focused on exploring new therapies, and found that natural products (NPs) isolated from herbs or plants may serve as promising therapeutic agents for IBD through antiinflammatory, anti-oxidant, anti-fibrotic and anti-apoptotic effects, which implicates the modulation on nucleotide- binding domain (NOD) like receptor protein (NLRP) 3 inflammasome, gut microbiota, intestinal microvascular endothelial cells, intestinal epithelia, immune system, etc. In the present review, we will summarize the research development of IBD pathogenesis and current mainstream therapy, as well as the therapeutic potential and intrinsic mechanisms of NPs in IBD.


2020 ◽  
Vol 17 (2) ◽  
pp. 82-90 ◽  
Author(s):  
Ghodsi Mohammadi Ziarani ◽  
Fatemeh Mohajer ◽  
Zohreh kheilkordi

Background: Natural products have been received attention due to their importance in human life as those are biologically active. In this review, there are some reports through different methods related to the synthesis of the indolizidine 195B which was extracted from poisonous frog; however, due to respect nature, the synthesis of natural compounds such as indolizidine has been attracted much attention among scientists and researchers. Objective: This review discloses the procedures and methods to provide indolizidine 195B from 1989 to 2018 due to their importance as a natural product. Conclusion: There are several methods to give rise to the indolizidine 195B as a natural product that is highly active from the biological perspective in pharmaceutical chemistry. In summary, many protocols for the preparations of indolizidine 195B from various substrates, several reagents, and conditions have been reported from different aromatic and aliphatic.


2020 ◽  
Vol 06 ◽  
Author(s):  
Sayed Md Mumtaz ◽  
Madhu Gupta ◽  
Ramesh K. Goyal

Abstract:: The placenta that maintains and regulates the growth of fetus, consists of various biological treasures nutrients such as cytomedines, vitamins, trace elements, amino acids, peptides, growth factors and other biologically active constituents. Their therapeutic usefulness can well define in the terms of biochemical mechanisms of various components present in it. Biomedical waste derived extract is also a panacea for treatment of various diseases. Placental therapy has been reported specifically to have potent action on recovery of diseases and tissue regeneration. Placental bioactive components and their multi targeting identity prompted us to compile the précised information on placental extract products. However, some findings are needed to be explored by scientific community to prove their clinical potential with clinically significant statistical conclusions. In the light of available information and the usefulness of the placental extract, it is necessary for the development of various formulations for various unmet meet for the treatment as well as access their adverse effects as well as contradictions and precisely evaluated in the short and in the long-term periods.


Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 458
Author(s):  
Emmanuel Broni ◽  
Samuel K. Kwofie ◽  
Seth O. Asiedu ◽  
Whelton A. Miller ◽  
Michael D. Wilson

The huge burden of leishmaniasis caused by the trypanosomatid protozoan parasite Leishmania is well known. This illness was included in the list of neglected tropical diseases targeted for elimination by the World Health Organization. However, the increasing evidence of resistance to existing antimonial drugs has made the eradication of the disease difficult to achieve, thus warranting the search for new drug targets. We report here studies that used computational methods to identify inhibitors of receptors from natural products. The cell division cycle-2-related kinase 12 (CRK12) receptor is a plausible drug target against Leishmania donovani. This study modelled the 3D molecular structure of the L. donovani CRK12 (LdCRK12) and screened for small molecules with potential inhibitory activity from African flora. An integrated library of 7722 African natural product-derived compounds and known inhibitors were screened against the LdCRK12 using AutoDock Vina after performing energy minimization with GROMACS 2018. Four natural products, namely sesamin (NANPDB1649), methyl ellagic acid (NANPDB1406), stylopine (NANPDB2581), and sennecicannabine (NANPDB6446) were found to be potential LdCRK12 inhibitory molecules. The molecular docking studies revealed two compounds NANPDB1406 and NANPDB2581 with binding affinities of −9.5 and −9.2 kcal/mol, respectively, against LdCRK12 which were higher than those of the known inhibitors and drugs, including GSK3186899, amphotericin B, miltefosine, and paromomycin. All the four compounds were predicted to have inhibitory constant (Ki) values ranging from 0.108 to 0.587 μM. NANPDB2581, NANPDB1649 and NANPDB1406 were also predicted as antileishmanial with Pa and Pi values of 0.415 and 0.043, 0.391 and 0.052, and 0.351 and 0.071, respectively. Molecular dynamics simulations coupled with molecular mechanics Poisson–Boltzmann surface area (MM/PBSA) computations reinforced their good binding mechanisms. Most compounds were observed to bind in the ATP binding pocket of the kinase domain. Lys488 was predicted as a key residue critical for ligand binding in the ATP binding pocket of the LdCRK12. The molecules were pharmacologically profiled as druglike with inconsequential toxicity. The identified molecules have scaffolds that could form the backbone for fragment-based drug design of novel leishmanicides but warrant further studies to evaluate their therapeutic potential.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4226
Author(s):  
Nikolaos Pitsikas ◽  
Konstantinos Dimas

Natural products or organic compounds isolated from natural sources as primary or secondary metabolites have inspired numerous drugs [...]


Sign in / Sign up

Export Citation Format

Share Document