scholarly journals The effect of locally source carbonaceous materials on the mechanical properties of mild steel

2016 ◽  
Vol 5 (3) ◽  
pp. 77
Author(s):  
Dongo Isaac Enesi ◽  
Seidu S. Ojo ◽  
Ogbodo Friday John

The work focuses on the effects of locally sourced carbonaceous materials such as Animal bone, Snail shell and Periwinkle Shell on the mechanical properties of mild steel carburized at varying treatment temperatures of 700, 800, 900, 1000 and 1100 °C, soaked at varying carburizing time of 5hr, 4hr, 3hr, 2hr and 1hr at the respective treatment temperatures. The samples are quenched in oil and tempered at 350°C for 45 minutes. Prior to the carburization process, standard test samples were prepared from the as received specimen for tensile tests, wear test and micro hardness analysis. After the carburization process, the test samples were subjected to standard test to generate data for ultimate tensile strength, the case and core hardness values, wear rate and wear resistance of the carburized samples. The study shows that the mechanical properties of mild steels were found to be strongly influence by each of the carbonaceous materials.

2019 ◽  
Vol 8 (2S11) ◽  
pp. 2262-2266

The nano crystalline thin coating of NiFe and NiP C has been successfully carried out by using electroplating technique in order to enhance the structural and mechanical properties of mild steel. The NiFe & NiP thin layers were coated on mild steel at constant current density and pH over a deposition period of 30 minutes. All the coated mild steel samples were subjected to various characterization techniques like X-ray Diffraction method (XRD), Vickers hardness, surface roughness and wear test to reveal the effect of NiFe and NiP on mild steel. The mechanical properties such as surface roughness and wear behavior were investigated by using Stylus profilometer and Pin on disc method. The coated mild steel exhibits enhanced mechanical properties than that of uncoated mild steel. The variations in structural and mechanical properties of coated mild steel were also studied.


2016 ◽  
Vol 879 ◽  
pp. 424-429 ◽  
Author(s):  
Maria Teresa di Giovanni ◽  
Emanuela Cerri ◽  
Mattia Merlin ◽  
Daniele Casari ◽  
Lars Arnberg ◽  
...  

In this study, the effect of aging on the mechanical properties of unmodified A356 aluminium casting alloy with trace additions of Ni or V was investigated. Trace elements were added in concentrations of 600 and 1000 ppm of Ni and V, respectively. Samples from sand and permanent mould castings in as cast and T6 heat-treated conditions were tested. Tensile tests were performed at both room and high temperature (235 °C). Taking into account the results from both testing conditions, Vickers hardness was measured in order to endorse the hypothesis of artificial aging occurring during high temperature tensile tests. In order to study this effect, a series of specimens was aged at 235 °C for different aging times, and aging curves were plotted. The occurrence of static and dynamic aging was evaluated by comparing hardness values of tensile specimens and aged samples, particularly in the range of 5-20 min, as this range corresponds to the time necessary for pre-heating and testing of the tensile samples. A basic correlation between tensile strength and hardness is also given.


2018 ◽  
Vol 50 (1) ◽  
pp. 51-61 ◽  
Author(s):  
Muharrem Pul

In this study, powders of Al 1070 and B4C were prepared by volume in three different reinforcement ratios 4 % B4C, 8 % B4C and 16 % B4C compacted under the pressure of 500 MPa with cold pressing method then sintered under the temperatures of 500, 550 and 600?C. Then the hardness was measured and wear test was performed using pin-on-disk method. In the results of tests, the compression pressure of 500 MPa was not sufficient for composite structure to achieve the required density. The highest hardness values were achieved at sintering temperature of 550?C and in 8 % B4C reinforced composite. The highest wear rate was measured in 4% B4C reinforced composite specimen sintered at 600?C. It is determined that a sintering temperature above 550?C had adverse effects on the mechanical properties.


2020 ◽  
Vol 26 (3) ◽  
pp. 127-130
Author(s):  
Nassim Markiz ◽  
Eszter Horváth ◽  
Péter Ficzere

AbstractIn the recent years, additive manufacturing became an interesting topic in many fields due to the ease of manufacturing complex objects. However, it is impossible to determine the mechanical properties of any additive manufacturing parts without testing them. In this work, the mechanical properties with focus on ultimate tensile strength and modulus of elasticity of 3D printed acrylonitrile butadi-ene styrene (ABS) specimens were investigated. The tensile tests were carried using Zwick Z005 loading machine with a capacity of 5KN according to the American Society for Testing and Materials (ASTM) D638 standard test methods for tensile properties of plastics. The aim of this study is to investigate the influence of printing direction on the mechanical properties of the printed specimens. Thus, for each printing direction ( and ), five specimens were printed. Tensile testing of the 3D printed ABS specimens showed that the printing direction made the strongest specimen at an ultimate tensile strength of 22 MPa while at printing direction it showed 12 MPa. No influence on the modulus of elasticity was noticed. The experimental results are presented in the manuscript.


Author(s):  
Alcántara Alza Víctor

How the parameters of artificial aging heat treatments, in AA 6063 aluminum samples, previously solubilized and deformed in cold, influence on the mechanical properties of hardness and traction was investigated. The experiments followed the sequence: First, the solubilization treatment was carried out for 2h using prismatic specimens of 10mm thickness; then the samples were cold deformed with area reductions: 30% -60% -80%. Finally, the aging treatment was carried out on all samples, using temperatures: 150-250-350-450 °C, and holding times: 1-10-30-60-90-120 min. After aging the samples were machined according to the standards. The hardness was measured on the Vickers scale (HV) and the tensile tests followed the ASTM E 8M-95ª standard. Microscopy was performed at the optical and Electronic SEM level, complemented with an EDS analysis. It was found that the highest hardness values occur at 150 °C. The yield point YS increases as decreasing aging temperature, and decreases whith increasing deformation degree. The mechanical strength UTS increases as decreasing temperature and increasing whith deformation degree. Regarding the mechanical properties of traction, the optimal condition is found for the samples deformed at 80% and aged at 250 °C, presenting a (UTS) of 193 MPa, and 15% elongation. The samples with 80% reduction, aged at 450 °C for 120 min are those with the best recrystallization index. It would take a time greater than 120 min for the grains to thicken and the precipitates completely disappear to reach complete recrystallization. EDS analysis indicates the presence of Mg2Si precipitates and the β phase.


2021 ◽  
Vol 63 (11) ◽  
pp. 1058-1062
Author(s):  
Uğur Avcı ◽  
Yusuf Eren Erdoğdu

Abstract In this study, aluminum Al6013 and copper (Cu) cylindrical bimetal was manufactured by means of an original production method. The optical microscope and scanning electron microscope (SEM) images of the bimetal material produced through this approach, semi-centrifugal compression, were used in microstructural investigations following which metallurgical transition zones were defined. Through an energy dispersive X-ray (EDX) analysis of the defined regions, the chemical content of the regions were determined. Micro hardness values of the regions were determined and comparisons were made with the chemical content and hardness values of the materials used in the bimetal production before the manufacturing process. In addition, the mechanical properties of the materials were compared by applying tensile tests to the bimetallic components Cu and Al6013 and to the bimetal material produced. In the light of the values obtained, the general properties of the bimetal material produced through this new approach were presented.


2014 ◽  
Vol 606 ◽  
pp. 253-256 ◽  
Author(s):  
Martin Ovsik ◽  
Petr Kratky ◽  
David Manas ◽  
Miroslav Manas ◽  
Michal Stanek ◽  
...  

This article deals with the influence of different doses of Beta radiation to the structure and mico-mechanical properties of Low-density polyethylene (LDPE). Hard surface layers of polymer materials, especially LDPE, can be formed by radiation cross-linking by β radiation with doses of 33, 66 and 99 kGy. Material properties created by β radiation are measured by micro-hardness test using the DSI method (Depth Sensing Indentation). Individual radiation doses caused structural and micro-mechanical changes which have a significant effect on the final properties of the LDPE tested. The highest values of micro-mechanical properties were reached at radiation dose of 66 and 99 kGy, when the micro-hardness values increased by about 21%. The changes were examined and confirmed by X-ray diffraction.


Life ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 43
Author(s):  
Lamya Zahir ◽  
Takumitsu Kida ◽  
Ryo Tanaka ◽  
Yuushou Nakayama ◽  
Takeshi Shiono ◽  
...  

An innovative type of biodegradable thermoplastic elastomers with improved mechanical properties from very common and potentially renewable sources, poly(L-lactide)-b-poly(2-methyl-1,3-propylene glutarate)-b-poly(L-lactide) (PLA-b-PMPG-b-PLA)s, has been developed for the first time. PLA-b-PMPG-b-PLAs were synthesized by polycondensation of 2-methyl-1,3-propanediol and glutaric acid and successive ring-opening polymerization of L-lactide, where PMPG is an amorphous central block with low glass transition temperature and PLA is hard semicrystalline terminal blocks. The copolymers showed glass transition temperature at lower than −40 °C and melting temperature at 130–152 °C. The tensile tests of these copolymers were also performed to evaluate their mechanical properties. The degradation of the copolymers and PMPG by enzymes proteinase K and lipase PS were investigated. Microbial biodegradation in seawater was also performed at 27 °C. The triblock copolymers and PMPG homopolymer were found to show 9–15% biodegradation within 28 days, representing their relatively high biodegradability in seawater. The macromolecular structure of the triblock copolymers of PLA and PMPG can be controlled to tune their mechanical and biodegradation properties, demonstrating their potential use in various applications.


2021 ◽  
pp. 073168442110204
Author(s):  
Bin Yang ◽  
Yingying Shang ◽  
Zeliang Yu ◽  
Minger Wu ◽  
Youji Tao ◽  
...  

In recent years, coated fabrics have become the major material used in membrane structures. Due to the special structure of base layer and mechanical properties, coated biaxial warp-knitted fabrics are increasingly applied in pneumatic structures. In this article, the mechanical properties of coated biaxial warp-knitted fabrics are investigated comprehensively. First, off-axial tensile tests are carried out in seven in-plane directions: 0°, 15°, 30°, 45°, 60°, 75°, and 90°. Based on the stress–strain relationship, tensile strengths are obtained and failure modes are studied. The adaptability of Tsai–Hill criterion is analyzed. Then, the uniaxial tensile creep test is performed under 24-h sustained load and the creep elongation is calculated. Besides, tearing strengths in warp and weft directions are obtained by tearing tests. Finally, the biaxial tensile tests under five different load ratios of 1:1, 2:1, 1:2, 1:0, and 0:1 are carried out, and the elastic constants and Poisson’s ratio are calculated using the least squares method based on linear orthotropic assumption. Moreover, biaxial specimens under four load ratios of 3:1, 1:3, 5:1, and 1:5 are further tensile tested to verify the adaptability of linear orthotropic model. These experimental data offer a deeper and comprehensive understanding of mechanical properties of coated biaxial warp-knitted fabrics and could be conveniently adopted in structural design.


Sign in / Sign up

Export Citation Format

Share Document