scholarly journals Review on foundation practices for expansive soils, special emphasis on granular anchor pile foundation

2018 ◽  
Vol 7 (2.1) ◽  
pp. 84
Author(s):  
Munnangi RaviTeja ◽  
N R Krishna Murthy

Mostly the lightly loaded structures founded in expansive soils develop cracks owing to alternate shrinkage and swelling as the weight of superstructure cannot counteract the swelling pressure. Hence the cost of foundation to be laid in these soils must be suitable proportions to low cost of structure. This paper presents a critical review on emphasis on granular anchor pile foundation and  other the foundation practices for expansive soil. 

2000 ◽  
Vol 37 (4) ◽  
pp. 870-881 ◽  
Author(s):  
B R. Phani Kumar ◽  
N Ramachandra Rao

Granular pile anchors are innovative and effective in resisting the uplift pressure exerted on the foundation by a swelling expansive soil. In a granular pile anchor, the foundation is anchored at the bottom of the granular pile to an anchor plate with the help of a mild steel rod. This renders the granular pile tension-resistant and enables it to offer resistance to the uplift force exerted on the foundation by the swelling soil. This resistance to uplift or pull-out load depends mainly upon the shear parameters of the pile-soil interface and the lateral swelling pressure of the soil, which confines the pile radially and prevents it from being uplifted. The resistance to uplift can be increased by placing a base geosynthetic above the anchor plate so that it forms an integral part of the granular pile anchor. The increase in resistance is due to the friction mobilized between the geosynthetic and the confining media when the uplift load acts on the pile and the geosynthetic moves along with the pile. Hence it depends on the friction between the geosynthetic and the confining media and the area and stiffness of the geosynthetic. This paper discusses the effects of these parameters on pull-out load, rate of heave, and relative ground movement near the pile surface.Key words: expansive soil, granular pile anchor, base geosynthetic, ground movement, rate of heave, pull-out load.


From the fast few decades, several techniques were introduced inorder to modify the behaviour of expansive clays. The use of strong electrolytes like calcium chloride (CaCl2 ), aluminum trichloride (AlCl3 ) and iron chloride (FeCl3 ) were extensively used in various civil engineering applications. Expansive soils possesses alternate shrinkage and swelling with the removal and addition of water from it. Iron chloride was effectively used to alter the swelling and shrinkage and also improve the engineering behaviour of expansive clays. Therefore, in the current work an effort is made for study the influence of iron chloride (FeCl3 ) on the strength behaviour of the expansive soil. The outcomes from the laboratory investigation proved that the usage of iron chloride (FeCl3 ) produce reduction in swelling and improvement in the strength. It was found that 1% FeCl3 be the optimum for both the UCS and CBR. Hence, from the investigation it was showed that iron chloride is a valuable stabilizer to enhance the properties of black cotton soil and to create it apt for various applications of Civil Engineering.


2022 ◽  
Author(s):  
Mohamed Sakr ◽  
Waseim Azzam ◽  
Mohamed Meguid ◽  
Hebatalla Ghoneim

Abstract Expansive soils are found in many parts of the world, especially in arid areas and dry weather regions. Urbanization and development of new cities around the world resulted in construction in areas of challenging subsurface soil conditions. For example, in the Middle East, the Government of Egypt is building several new cities to accommodate the continuous increase in the country’s population. Most of these new cities are located in areas underlain by expansive soils. In this study, a series of laboratory tests were carried out to investigate the effect of introducing micro-metakaolin into the matrix of an expansive soil to improve the swelling potential as a new stabilizing material. Test results showed that micro-metakaolin can considerably decrease the free swell index of the soil by 37% and 54% at micro-metakaolin content of 15% and 25%, respectively. In addition, the shear strength of the soil was found to also increase as a result of the introduction of the micro-metakaolin material. Adding 25% micro-metakaolin content reduced the swelling pressure of the soil by about 33%. The results suggest that the proposed method is efficient in stabilizing and improving the properties of expansive soils found in arid areas. This is important to control excessive swelling and prevent possible damage to the supported structures.


2015 ◽  
Vol 4 (3) ◽  
pp. 424
Author(s):  
María-de-la-Luz Pérez-Rea ◽  
Tania Ayala ◽  
Victor Castano

Because the action of the swelling pressure, the settlements caused by the transmitted load from the structure on expansive soils, and the settlements calculated by classic theories of soils mechanics are different. This swelling pressure acts in opposite direction to the weight of the building. In this paper, the authors propose the use of a volumetric strain coefficient by settlements exp, in a soil-structure interaction algorithm taking into account the expansive soil behavior in the reduction of the settlement magnitude when a building is placed above soil. It’s necessary to know the initial properties of the expansive unsaturated soil and the load building conditions. A laboratory process is described for determining the aexpcoefficient.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Swayansu Sabyasachi Mohanty ◽  
Yamini Koul ◽  
Sunita Varjani ◽  
Ashok Pandey ◽  
Huu Hao Ngo ◽  
...  

AbstractThe quest for a chemical surfactant substitute has been fuelled by increased environmental awareness. The benefits that biosurfactants present like biodegradability, and biocompatibility over their chemical and synthetic counterparts has contributed immensely to their popularity and use in various industries such as petrochemicals, mining, metallurgy, agrochemicals, fertilizers, beverages, cosmetics, etc. With the growing demand for biosurfactants, researchers are looking for low-cost waste materials to use them as substrates, which will lower the manufacturing costs while providing waste management services as an add-on benefit. The use of low-cost substrates will significantly reduce the cost of producing biosurfactants. This paper discusses the use of various feedstocks in the production of biosurfactants, which not only reduces the cost of waste treatment but also provides an opportunity to profit from the sale of the biosurfactant. Furthermore, it includes state-of-the-art information about employing municipal solid waste as a sustainable feedstock for biosurfactant production, which has not been simultaneously covered in many published literatures on biosurfactant production from different feedstocks. It also addresses the myriad of other issues associated with the processing of biosurfactants, as well as the methods used to address these issues and perspectives, which will move society towards cleaner production.


1998 ◽  
Vol 35 (1) ◽  
pp. 96-114 ◽  
Author(s):  
Fangsheng Shuai ◽  
D G Fredlund

Numerous laboratory swelling tests have been reported for the measurement of swelling pressure and the amount of swell of an expansive soil. These test methods generally involve the use of a conventional one-dimensional oedometer apparatus. Few attempts, however, have been made to formulate a theoretical framework to simulate the testing procedures or to visualize the different stress paths followed when using the various methods. The simulation of the oedometer tests on expansive soils is required to fully understand the prediction of heave. The correct measurement of swelling pressure is required for an accurate prediction of heave. It is further anticipated that some information on unsaturated soils property functions may be approximated from the back-analysis of the data. A theoretical model is proposed to describe the pore-water pressures with time and depth in a specimen as well as the volume changes during various oedometer swell tests. The model is formulated based on equilibrium considerations, constitutive equations for an unsaturated soil, and the continuity requirement for the pore fluid phases. The transient water flow process is coupled with the soil volume change process. The model can be used to describe the volume-change behaviour, pore-water pressure, and vertical total stress development in an unsaturated soil during an oedometer test performed by any one of several test procedures. The model has been put into a finite element formulation using the Galerkin technique. All the parameters required to run the model can be obtained by performing independent, common laboratory tests. The proposed model was used to simulate the results from free-swell, constant-volume, constant water content, and loaded-swell oedometer tests. Computed values of volume change, vertical total stress, and pore-water pressure are in good agreement with measured values.Key words: unsaturated soil, expansive soil, swelling pressure, theoretical simulation, constant-volume oedometer test, free-swell oedometer test, loaded-swell oedometer test.


2021 ◽  
Vol 3 (2) ◽  
pp. 44-51
Author(s):  
Talal Masoud ◽  
Abdulrazzaq Jawish Alkherret

  In this study for factors effecting the swelling pressure of jerash expansive soils were investigated in this study, effect of initial dry density and effect of initial water content on the jerash expansive soil were investigated.It show that as the initial dry density decrease from 1.85 gm/cm3  to1.25 gm/cm3 , the swelling pressure also decrease are from 3.1  to 0.25gm/cm2   also it show that as the initial water content increase from 0%to 15% , the swelling pressure of jerash expansive soil decrease from 2.65 gm/cm2  to 1.35 gm/cm2  .  


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Mingyu Li ◽  
Yanqing Wei ◽  
Yunlong Liu ◽  
Junwei Jin

Lateral swelling pressure (LSP) develops when expansive soil volume increment associated with water infiltration is restrained in a confined domain, for example, due to construction of civil infrastructure. In this paper, initially a flowchart is developed to highlight various key factors that influence the LSP mobilization according to lab and field studies collected from previous literature studies. Then extending unsaturated soil mechanics, a theoretical framework is proposed for illustrating the LSP mobilization in the field against retaining structures and pile foundations under different boundary conditions, respectively. An example problem for a basement wall and a pile foundation constructed in a typical expansive soil from Regina, Canada, is presented to illustrate the proposed theoretical framework. The framework and corresponding analysis presented in this paper can facilitate to provide rational designs of geotechnical infrastructures in expansive soils.


2018 ◽  
Vol 147 ◽  
pp. 07003
Author(s):  
David Simangunsong ◽  
Satrio Wibowo ◽  
Zufialdi Zakaria

Expansive soil is a kind of soil that has ability to shrinkage and swelling. According to Ronny (2014) Jatinangor area has expansive soil that is so very influential in the planning of infrastructure construction. This research aimed to measure the bearing capacity of the very expansive soils in Jatinangor area and to determine the correlation between activity number of soil and its bearing capacity. The method used is to collect the soil physics and mechanics data. Based on the soil mechanics data, the research location is divided into three zones of allowable bearing capacity, those are zone with allowable bearing capacity < 4 T/m2, zone with allowable bearing capacity 4-7 T/m2, and zone with allowable bearing capacity > 7 T/m2. The correlation between activity number and bearing capacity of soil follows the equation qa = -1.9505(A) + 6.957 with correlation coefficient is -0.7911.


2020 ◽  
Vol 857 ◽  
pp. 367-373
Author(s):  
Yahya K. Atemimi

The interest in expansive soils goes as far as they were considered as a new phase of soil mechanics. Problems associated with potential volume change of soils occur worldwide, mainly in the arid and semi-arid climatic region, as is the case of the country of this research. These problems are particularly existed in regions where the variation in the moisture content can cause a potential expansiveness of the soil. In fact, Bentonite/Sand mixture represents one of the available answers for the geotechnical engineering problems such as heaves, cracks and other damages caused by swelling and shrinkage. This mixture may be used to 1) reduce the settlement time of structures, and 2) increase the permeability of soils. The main target of the present work is to demonstrate the influence of adding sand on an expansive soil (bentonite) behavior. This includes an investigation to the effect of the amount and the particles size of sand on the physical properties of the expansive soil. The reduction in swelling and swelling pressure of the expansive soil by the addition of different percentages and different particles size of sand and the consequent effect on strength characteristic were also studied. Thirteen samples of Bentonite/sand mixture were used in this study to evaluate the effect of the sand percentages on the swelling behavior. To implement the laboratory program, many tests were used which were sieve analysis, Atterberg’s limits, compaction, and free swelling test with swelling pressure test. The results indicated a reduction in the liquid limit of around 55% and in the plastic limit of around 54%, where the increase in the maximum dry density was 46%. On the other hand, the reduction in the swelling pressure was 87.5%.


Sign in / Sign up

Export Citation Format

Share Document