scholarly journals Magnetic Water Effect on Concrete Properties of Canal Lining

2018 ◽  
Vol 7 (4.20) ◽  
pp. 194 ◽  
Author(s):  
Raad Hoobi Irzooki ◽  
Ammar Saleem Khazaal ◽  
Zaid Imad Mohammed

The present research investigated the magnetic field effect on the properties of tap water and the magnetic water effect on some properties of the concrete used for irrigation canal lining, so, for this purpose, the absorption and seepage features of concrete will be studied. The magnetic water was obtained by passing the tap water through magnetized devices with three different intensities (3000, 5000, and 7000) Gauss for 120 minutes. Some properties of magnetized water such as surface tension, viscosity, conductivity, TDS, and pH were studied. The results show that the surface tension, viscosity and electric conductivity of treated water with three different magnetization intensities were decreased about (19-22)%, (4-5)% and (6-8)% respectively as compared with results of the tap water. Also, the results show that pH was increased about (8-10)%. The magnetized water effect on the properties of concrete like compressive strength, slump, absorption, and seepage were studied. The results show that using the magnetized water (with three different intensities) instead of the tap water increased the compressive strength of concrete between (3-17)% for age of 28 days, and increased the slump between (5-13)mm. This leads to the possibility of increasing the water-cement ratio, which is, means decreasing the cost of concrete at a specified value of compressive strength. Also, the results show that the absorption and seepage were decreased about (1-9.5) % and (2-20)% respectively.  

2014 ◽  
Vol 11 (2) ◽  
pp. 605-613
Author(s):  
Baghdad Science Journal

This research studied the effect of magnetized water in concrete preparation and its effect on the presenting of cement in concrete mixtures also to find the ability of reducing the amount of cement in preparing one cubic meter, this is not exceed than 10% in one mixture , The experiments showed the preparation of standard cubes from the concrete which was used two kind of water magnetized water which was prepared by passing the tap water through the systems of different magnetic strength in terms of (6000,9000) Gauss and the ordinary water . The velocity of water through the magnetic field, which gives us the highest value for the compressive strength, was up to 1m/sec. to determine the best magnetic intensity, we examined The compressive strength and workability of the concrete which is not effect on the efficiency of the structure because of reducing cement percentage. The tests for compressive strength on concrete mixture with magnetized water appeared an increase (24%) compared to the results of the control cubes with fixed amount of cement; also the cubes with less amount of cement showed an increase (22%) and both cases give us higher compressive strength and workability.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Wasim Barham ◽  
Ammar AL-Maabreh ◽  
Omar Latayfeh

PurposeThe influence of using magnetic water instead of tap water in the mechanical properties of the concrete exposed to elevated temperatures was investigated. Two concrete mixes were used and cast with the same ingredients. Tap water was used in the first mix and magnetic water was used in the second mix. A total of 48 specimens were cast and divided as follows: 16 cylinders for the concrete compressive strength test (8 samples for each mix), 16 cylinders for the splitting tensile strength (8 specimens for each mix) and 16 beams to test the influences of magnetized water on the flexural strength of concrete (8 specimens for each mixture). Specimens were exposed to temperatures of (25 °C, 200 °C, 400 °C and 600 °C). The experimental results showed that magnetic water highly affected the mechanical properties of concrete. Specimens cast and curried out with magnetic water show higher compressive strength, splitting tensile strength and flexural strength compared to normal water specimens at all temperatures. The relative strength range between the two types of water used was 110–123% for compressive strength and 110–133% for splitting strength. For the center point loading test, the relative flexural strength range was 118–140%. The use of magnetic water in mixing concrete contribute to a more complete hydration process.Design/methodology/approachExperimental study was carried out on two concrete mixes to investigate the effect of magnetic water. Mix#1 used normal water as the mixing water, and Mix#2 used magnetic water instead of normal water. After 28 days, all the samples were taken out of the tank and left to dry for seven days, then they were divided into different groups. Each group was exposed to a different temperature where it was placed in a large oven for two hours. Three different tests were carried out on the samples, these tests were concrete compressive strength, flexural strength and splitting tensile strength.FindingsExposure of concrete to high temperatures had a significant influence on concrete mechanical properties. Specimens prepared using magnetic water showed higher compressive strength at all temperature levels. The use of magnetic water in casting and curing concrete can increase the compressive strength by 23%. Specimens prepared using magnetic water show higher splitting tensile strength at all temperatures up to 33%. The use of magnetic water in casting and curing can strengthen and increase concrete resistance to high temperatures, a significant enhancement in flexural strength at all temperatures was found with a value up to 40%.Originality/valuePrevious research proved the advantages of using magnetic water for improving the mechanical properties of concrete under normal conditions. The potential of using magnetic water in the concrete industry in the future requires conducting extensive research to study the behavior of magnetized concrete under severe conditions to which concrete structures may be subjected to. These days, there are attempts to obtain stronger concrete with high resistance to harsh environmental conditions without adding new costly ingredients to its main mixture. No research has been carried out to investigate the effect of magnetic water on the mechanical properties of concrete exposed to elevated temperature. The main objective of this study is to evaluate the effect of using magnetic water on the mechanical properties of hardened concrete subjected to elevated temperature.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 275
Author(s):  
Huan-Xiao Hu ◽  
Chao Deng

In this study, tap water is magnetized by a self-developed device. The conductivity and evaporation of magnetized water (MW) at different temperatures are tested to demonstrate the magnetization mechanism. The results show that the conductivity and evaporation of the magnetized water increase to different degrees compared with regular tap water (RW). The maximum increase in conductivity is 10.6%, and the maximum increase in evaporation is 25.6% and 16.7% at 50 and 80 °C, respectively. Cement grout samples with water-cement ratios (w/c) of 0.5 and 1.0 were prepared with magnetized water. The stability of the cement grout mixed with RW and MW under different magnetic conditions is tested. The compressive strength and SEM images of the hardened cement grout samples mixed with RW and MW (under optimum magnetic conditions) are compared. The cement grout prepared with MW has a higher stability compared to that of the control specimen, and the relative change of bleeding volume of the MW cement grout with w/c = 0.5 and 1 is 67.69% and 24.36%, respectively. MW has a positive effect on the consolidation compressive strength of cement grout. SEM images show that hardened cement grout with MW has more hydrate crystals, more compact filling space between cement particles, more contact points, and fewer voids compared to that of RW. The influence mechanism of MW on the stability of cement grout is analyzed, which provides a theoretical basis for the application of MW in the field of grouting engineering.


2020 ◽  
Vol 10 (5) ◽  
pp. 507
Author(s):  
Redouane Mghaiouini ◽  
Abderahmane Elmalouky ◽  
Nisrine Benzbiria ◽  
Radad El Moznine ◽  
Mohamade Monkade ◽  
...  

<p>This paper presents an experimental study to investigate the effect of using the electromagnetic field on the electric conductivity and dielectric properties of treated tap water by aqua 4 D system according to the time of exposition in a closed water circulation circuit. There is a portion where there is an electromagnetic field obtained by the electromagnetic device. This work includes tap water circulation in the region of the electromagnetic field for 5 min, 10, 15, 20 min. The dielectric and electrical properties were examined and analyzed using the technique impedance spectroscopy in the frequency range going from 0.1 Hz to 1 MHz.</p><p>To initiate the phenomena involving water after magnetization with the electromagnetic field. The results clearly show that the magnetic field reduces the dielectric constant and resistance of water and increase its electric conductivity. In this study, we also find that the electrical conductivity of magnetized water increases.</p>


2011 ◽  
Vol 250-253 ◽  
pp. 601-604 ◽  
Author(s):  
Yi Xin Wang ◽  
Xuan Wang ◽  
You Kai Wang

The compactness and water impermeability of the concrete mixed with magnetized water in different degrees are studied in the thesis. According to the principle of cross-test, 21 samples with the intensity levels C20, C25 and C30 are chosen in the impermeability test. The test indicates the difference of impermeability between magnetized water concrete and ordinary water concrete at the condition of same strength to study the special law influenced by the flow speed of water and the magnetic field strength. The best magnetic field strength and the best water flow speed have been obtained among the range of test parameters.


2019 ◽  
Vol 3 (2) ◽  

The Aims of Study: to study the effect of interaction of dental stone with tap water and physically magnetized water on two periods of time 24h and 12h to study the change in the physical properties of final product. Materials and Methods: We started prepare no. of control samples and other of samples interacted with physically magnetized water for two periods of time 24h and 12h, then we studied the liner setting expansion and compressive strength. Results: Results obtained from comparing control sample with that treated with physically magnetized water showed an increase in the compressive strength of physically magnetized group and decrease of linear setting expansion in comparison with that of control sample. Conclusion: Reaction of dental stone with physically magnetized water lead to change in some physical properties of dental stone.


2020 ◽  
Vol 4 (3) ◽  
pp. 37
Author(s):  
Aleksandra Szcześ ◽  
Emil Chibowski ◽  
Emilia Rzeźnik

It was reported in many papers that the magnetic field (MF) affects properties of water, and, among others, its surface tension. Thus, it should be reflected in changes of the wetting contact angle of a water droplet deposited on the solid surface. In this study, the water contact angles were measured on the glass and mica surface. The water was first exposed to the static magnetic field (MF) (15 mT or 0.27 T) for 1, 5, and 10 min under dynamic conditions. Then applying the van Oss et al. approach (LWAB), it was found that the MF effect is reflected in the changes of the calculated acid-base components of the solids, especially the electron donor parameter. However, the total surface free energy of the solids remained practically unchanged. Moreover, the apparent surface free energy of the solids calculated from the water contact angle hysteresis (CAH), i.e., the difference between the advancing and receding contact angles, changes in the same way as the electron donor parameter does. Since the solid surfaces were not magnetically treated, the acid-base components, which are mainly results from hydrogen bonding interactions, may be indirect evidence of the water structure changed by the MF action. All of the mentioned changes are greater for the glass than for a more hydrophilic mica surface and depend upon the time of MF exposure and its strength. The magnetic field effect on the changes of the surface-free energy parameters for the mica and glass is opposite what may be due to the difference in the surface hydrophilicity. A “magnetic memory” effect was also found. The effect of MF on the water surface tension depends on the circulation time. It increases with the field duration. Moreover, the changes in the work of water adhesion indicate the possibility of solid surface wettability changes by the external MF water treatment. However, these are preliminary results that need further confirmation by other techniques.


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1971 ◽  
Author(s):  
Omar M. M. Yousry ◽  
Metwally A. Abdallah ◽  
Mariam F. Ghazy ◽  
Mohamed H. Taman ◽  
Mosbeh R. Kaloop

This research investigates the means to improve the compressive strength of mortar mixtures through using novel mixtures. These mixtures include magnetic water (MW) and fly ash (FA). MW was obtained by circulating tap water (TW) through a magnetic field. The magnetization duration was represented by the number of cycles, the content of FA was replaced with cement, and the super plasticizer percentage (SP) and the curing age were used and evaluated experimentally for producing the mortar mixtures. Mortar flow, crushing compressive strength, and ultrasonic pulse velocity (UPV) tests were applied to evaluate the performances of mixing characteristics. The results demonstrate that the MW-treated mortar mixtures show higher compression strength results than those prepared by TW. The compressive strength was increased up to 60% with 150 cycles, a dose of 0.5% of SP and no FA content at the age of 56 days. The dose of SP can be cut down by a maximum of 40% to 50% in cementitious mortar. the workability was enhanced by a percentage of 70%.


2004 ◽  
Vol 9 (2) ◽  
pp. 129-138
Author(s):  
J. Kleiza ◽  
V. Kleiza

A method for calculating the values of specific resistivity ρ as well as the product µHB of the Hall mobility and magnetic induction on a conductive sample of an arbitrary geometric configuration with two arbitrary fitted current electrodes of nonzero length and has been proposed an grounded. During the experiment, under the constant value U of voltage and in the absence of the magnetic field effect (B = 0) on the sample, the current intensities I(0), IE(0) are measured as well as the mentioned parameters under the effect of magnetic fields B1, B2 (B1 ≠ B2), i.e.: IE(β(i)), I(β(i)), i = 1, 2. It has been proved that under the constant difference of potentials U and sample thickness d, the parameters I(0), IE(0) and IE(β(i)), I(β(i)), i = 1, 2 uniquely determines the values of the product µHB and specific resistivity ρ of the sample. Basing on the conformal mapping method and Hall’s tensor properties, a relation (a system of nonlinear equations) between the above mentioned quantities has been found.


Sign in / Sign up

Export Citation Format

Share Document