scholarly journals Kinetic Study on Removal of Sulphur Mustard on Granular Activated Carbon from Aqueous Solution

2016 ◽  
Vol 1 (2) ◽  
pp. 167 ◽  
Author(s):  
Anuradha Baghel ◽  
Beer Singh

Sulphur mustard is a powerful blister agent and has been worked as a chemical warfare agent. No specific antidote is available for its wound. Therefore, adsorptive removal is an effective way of removal. Here, adsorptive removal of sulphur mustard from aqueous solution was studied on activated carbon and screened out MeOH : H2O (1 : 1) solution as a good solvent than others used solvent. Adsorption isotherm of sulphur mustard was compared with its hydrolysis in the same solution. Kinetics of sulphur mustard removal on carbon from aqueous solution was found to be slower than hydrolysis and follow pseudo first order kinetics with the rate constant 5.04 X 10–3 min-1 and half life 137.5 min. The hydrolysis of sulphur mustard in MeOH : H2O (1 : 1) solution was found to be following the pseudo first order kinetics with the rate constant 8.68 x10-3 min-1 and half life 79.8 min.

2020 ◽  
Vol 16 ◽  
Author(s):  
M. Alarjah

Background: Prodrugs principle is widely used to improve the pharmacological and pharmacokinetic properties of some active drugs. Much effort was made to develop metronidazole prodrugs to enhance antibacterial activity and or to improve pharmacokinetic properties of the molecule or to lower the adverse effects of metronidazole. Objective: In this work, the pharmacokinetic properties of some of monoterpenes and eugenol pro metronidazole molecules that were developed earlier were evaluated in-vitro. The kinetic hydrolysis rate constants and half-life time estimation of the new metronidazole derivatives were calculated using the validated RP-HPLC method. Method: Chromatographic analysis was done using Zorbbax Eclipse eXtra Dense Bonding (XDB)-C18 column of dimensions (250 mm, 4.6 mm, 5 μm), at ambient column temperature. The mobile phase was a mixture of sodium dihydrogen phosphate buffer of pH 4.5 and methanol in gradient elution, at 1ml/min flow rate. The method was fully validated according to the International Council for Harmonization (ICH) guidelines. The hydrolysis process carried out in an acidic buffer pH 1.2 and in an alkaline buffer pH 7.4 in a thermostatic bath at 37ºC. Results: The results followed pseudo-first-order kinetics. All metronidazole prodrugs were stable in the acidic pH, while they were hydrolysed in the alkaline buffer within a few hours (6-8 hr). The rate constant and half-life values were calculated, and their values were found to be 0.082- 0.117 hr-1 and 5.9- 8.5 hr., respectively. Conclusion: The developed method was accurate, sensitive, and selective for the prodrugs. For most of the prodrugs, the hydrolysis followed pseudo-first-order kinetics; the method might be utilised to conduct an in-vivo study for the metronidazole derivatives with monoterpenes and eugenol.


1984 ◽  
Vol 62 (9) ◽  
pp. 1874-1876 ◽  
Author(s):  
Warren Kenneth Musker ◽  
Parminder S. Surdhar ◽  
Rizwan Ahmad ◽  
David A. Armstrong

The one electron oxidant •Br2− reacts with 5-methyl-1-thia-5-azacyclooctane (4) in aqueous solution at high pH with an overall rate constant of ~2 × 108 M s−1. The radical intermediate produced has a broad maximum at 500 nm with ε = 2400 M−1 cm−1 and at pH 10 decays with a first order rate constant of 2.3 ± 0.3 × 104 s−1, first half-life of 30 ± 5 μs. Its characteristics do not correspond to those of the [Formula: see text] species reported by Asmus and co-workers. The species appears to be the same as the cation radical reported earlier in the one electron oxidation of 4 in acetonitrile. This species is considered to have an [Formula: see text] type structure, which provides transannular stabilization.


2012 ◽  
Vol 65 (11) ◽  
pp. 1970-1974 ◽  
Author(s):  
C. Y. Kuo ◽  
C. Y. Pai ◽  
C. H. Wu ◽  
M. Y. Jian

This study applies photo-Fenton and photo-Fenton-like systems to decolorize C.I. Reactive Red 2 (RR2). The oxidants were H2O2 and Na2S2O8; Fe2+, Fe3+, and Co2+ were used to activate these two oxidants. The effects of oxidant concentration (0.3–2 mmol/L) and temperature (25–55 °C) on decolorization efficiency of the photo-Fenton and photo-Fenton-like systems were determined. The decolorization rate constants (k) of RR2 in the tested systems are consistent with pseudo-first-order kinetics. The rate constant increased as oxidant concentration and temperature increased. Activation energies of RR2 decolorization in the UV/H2O2/Fe2+, UV/H2O2/Fe3+, UV/Na2S2O8/Fe2+ and UV/Na2S2O8/Fe3+ systems were 32.20, 39.54, 35.54, and 51.75 kJ/mol, respectively.


2020 ◽  
Vol 81 (10) ◽  
pp. 2078-2091
Author(s):  
Shuyu Dong ◽  
Xiaoxue Zhai ◽  
Ruobing Pi ◽  
Jinbao Wei ◽  
Yunpeng Wang ◽  
...  

Abstract Degradation of naproxen (NAP) by persulfate (PS) activated with zero-valent iron (ZVI) was investigated in our study. The NAP in aqueous solution was degraded effectively by the ZVI/PS system and the degradation exhibited a pseudo-first-order kinetics pattern. Both sulfate radical (SO4•−) and hydroxyl radical (HO•) participate in the NAP degradation. The second-order rate constants for NAP reacting with SO4•− and HO• were (5.64 ± 0.73) × 109 M−1 s−1 and (9.05 ± 0.51) × 109 M−1 s−1, respectively. Influence of key parameters (initial pH, PS dosage, ZVI dosage, and NAP dosage) on NAP degradation were evaluated systematically. Based on the detected intermediates, the pathways of NAP degradation in ZVI/PS system was proposed. It was found that the presence of ammonia accelerated the corrosion of ZVI and thus promoted the release of Fe2+, which induced the increased generation of sulfate radicals from PS and promoted the degradation of NAP. Compared to its counterpart without ammonia, the degradation rates of NAP by ZVI/PS were increased to 3.6–17.5 folds and 1.2–2.2 folds under pH 7 and pH 9, respectively.


2013 ◽  
Vol 67 (7) ◽  
pp. 1605-1611 ◽  
Author(s):  
Qian Zhao ◽  
Li Feng ◽  
Xiang Cheng ◽  
Chao Chen ◽  
Liqiu Zhang

This paper investigated the effects of selected common chemical species in natural waters (HCO3−, NO3− and humic acids (HA)) on the photodegradation of amoxicillin (AMO) under simulated irradiation using a 300 W xenon lamp. Quenching experiments were carried out to explore the mechanisms of AMO photodegradation. The results indicated that AMO photodegradation followed pseudo-first-order kinetics. Increasing AMO concentration from 100 to 1,000 μg L−1 led to the decrease in the photodegradation rate constant from 0.2411 to 0.1912 min−1. The presence of NO3− and HA obviously inhibited the photodegradation rate of AMO because they can compete for photons with AMO. Bicarbonate, as a hydroxyl radical (·OH) scavenger, also adversely affected AMO photodegradation. Quenching experiments in pure water suggested that AMO could undergo self-sensitized photooxidation via ·OH and singlet oxygen (1O2), accounting for AMO removal of 34.86 and 8.26%, respectively. In HA solutions, the indirect photodegradation of AMO was mostly attributed to the produced ·OH (22.37%), 1O2 (24.12%) and 3HA* (20.80%), whereas the contribution of direct photodegradation was to some extent decreased.


2006 ◽  
Vol 2006 ◽  
pp. 1-6 ◽  
Author(s):  
Agatino Di Paola ◽  
Maurizio Addamo ◽  
Vincenzo Augugliaro ◽  
Elisa García-López ◽  
Vittorio Loddo ◽  
...  

Aqueous solutions of lincomycin were irradiated with UV light in homogeneous and heterogeneous systems. Lincomycin disappeared in both systems but the presence ofTiO2noticeably accelerated the degradation of the antibiotic in comparison with direct photolysis. The rate of decomposition was dependent on the concentration of lincomycin and followed a pseudo-first-order kinetics. Photolysis involved only the oxidation of lincomycin without mineralization. Differently, the treatment withTiO2and UV light resulted in a complete mineralization of the antibiotic. The degradation pathways involved S- and N-demethylation and propyldealkylation. The mineralization of the molecule led to the formation of sulfate, ammonium, and nitrate ions.


Weed Science ◽  
1976 ◽  
Vol 24 (5) ◽  
pp. 508-511 ◽  
Author(s):  
James S. Ladlie ◽  
William F. Meggitt ◽  
Donald Penner

Metribuzin [4-amino-6-tert-butyl-3-(methylthio)-as-triazine-5(4H)one] residue analysis of soil samples showed greater amounts of residue extractable at soil pH 6.7 than 4.6. Metribuzin leaching increased with increasing soil pH. Metribuzin disappearance from soil followed pseudo first-order kinetics. The half-life of metribuzin decreased as soil pH increased and increased at all soil pH levels as depth of sampling increased. The decreased activity and decreased rate of metribuzin dissipation at lower soil pH is apparently due to protonation and increased adsorption.


2010 ◽  
Vol 113-116 ◽  
pp. 176-180 ◽  
Author(s):  
Meng Li ◽  
Dong Lei Zou ◽  
Hao Chen Zou ◽  
Dong Yan Fan

Using iron filings, activated carbon power and clay as raw materials, the granular iron-carbon micro-electrolysis packing was made by the method of calcination. The influence of initial chlorobenzene (CB) concentration, pH value and reaction temperature on the removal rate of simulated wastewater containing CB were investigated. The results showed that the reaction followed the pseudo-first-order kinetics model and the rate constants varied at a relatively low degree at various pH. Temperature is an important parameter and an increase in temperature could significantly raise the reaction rates. The column packed with packing was designed to remove CB in wastewater. After running for 70 days, the packing still had good performance and there was no obvious decrease on the removal rate.


2018 ◽  
Vol 20 (2) ◽  
pp. 399-407 ◽  

Presence of antibiotics in the environment specially in aqueous environments is considered a major warning about health and environment. Thus, this study aims the efficiency of coupled process of Activated Carbon (AC) prepared from mango seed+ZnO under UV irradiation as an advanced oxidation process in removing cefazolin antibiotic from aqueous solutions. This experimental study was carried out in a discontinuous reaction chamber with volume of one liter. In this process, the effect of initial pH parameters of the environment (3– 9), initial concentration of cefazolin (20 – 200 mg/L), concentration of modified, photocatalyzer (20 – 100 mg/L) and reaction time (10 – 60 min) were studied. The pilot used consisted of a low pressure mercury lamp with a 55-watt beam radiation power inside the steel chamber. The kinetic of the process was studied based on pseudo first order kinetics. Results showed that the highest removal efficiency of cefazolin antibiotics in the reaction of UV/AC + ZnO, at optimal conditions of pH= 3, contact time of 60 min, initial concentration of 100 mg/L and modified photocatalyzer of 0.1 g/L was equal to 96%. The kinetic model determined for the process followed kinetic model of pseudo- first order kinetics with high correlation of (R2 = 0.99). Results of present study revealed that photocatalyzer process of nanoparticles oxidation on synthetic activated carbon can be effectively used as an advanced oxidation reaction to remove cefazolin and similar pollutants.


2000 ◽  
Vol 65 (10) ◽  
pp. 709-713 ◽  
Author(s):  
Slavica Blagojevic ◽  
Natasa Pejic ◽  
Slobodan Anic ◽  
Ljiljana Kolar-Anic

The kinetics of the Belousov-Zhabotinsky (BZ) oscillatory reaction was analyzed. With this aim, the tune evolution of a reactionmixture composedof malonic acid, bromate, sulfuric acid and cerium(III) was studied at 298 K. Pseudo-first order kinetics with respect to malonic acid as the species undergoing decomposition with a corresponding rate constant, k = 7.5x10-3 min-1, was found.


Sign in / Sign up

Export Citation Format

Share Document