DAMAGE MODES AND FAILURE MECHANISM OF 160,000 m3 LNG OUTER CONCRETE TANK UNDER IMPACT LOADING

Author(s):  
Ximei Zhai ◽  
Xinyu Zhao ◽  
Xinrui Li

In order to investigate the damage models and failure mechanism of the outer concrete tank of the liquefied natural gas (LNG) storage tank under impact loading, the finite element (FE) model of the outer concrete tank of 160,000 m3 LNG storage tank for an actual LNG project and a cylindrical impactor are established based on ANSYS/LSDYNA FE analysis software platform. Through the result comparison of the numerical simulation and an impact perforation test of reinforced concrete slabs subjected to projectile with high speed, the accuracy of the numerical simulation method and material model proposed from this paper are verified. The dynamic response of the concrete dome for LNG outer concrete tank structures under impact loading is studied. Based on response rules and failure phenomena of the dome for LNG outer concrete storage tank subject to impact loading, three damage modes are defined, and the failure mechanism for each mode is revealed from the view point of energy.

2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Gang Yu ◽  
Dong Li ◽  
Yue Shu ◽  
Zeyu Zhang

The engine/airframe interaction effects of the BWB300 on aerodynamic performances were analyzed by using the numerical simulation method. The BWB300 is a 300-seat Blended Wing Body airplane designed by the Airplane Concept Design Institute of Northwestern Polytechnical University. The engine model used for simulation was simplified as a powered nacelle. The results indicated the following: at high speed, although the engine/airframe interaction effects on the aerodynamic forces were not significant, the airframe’s upper surface flow was greatly changed; at low speed, the airframe’s aerodynamic forces (of the airplane with/without the engine) were greatly different, especially at high attack angles, i.e., the effect of the engine suction caused the engine configuration aerodynamic forces of the airframe to be bigger than those without the engine; and the engine’s installation resulting in the different development of flow separation at the airframe’s upper surface caused greater obvious differences between the 2 configurations at high angles and low speed. Moreover, at low-speed high attack angles, the separated flow from the blended area caused serious distortion at the fan inlet of the engine.


Author(s):  
Li Rongpeng ◽  
Li Yumin ◽  
Sui Chunguang ◽  
Jiang Di

Abstract With the change of anti-terrorism situation, civil unmanned aerial vehicles carrying small equivalent of explosives may cause damage to the reinforced concrete wall or roof of nuclear facilities at close range. Existing research has mostly focused on the overall damage caused by large equivalent explosives at medium and long distances. In this paper, the air overpressure peak curve and behavior of reinforced concrete slabs under small equivalent TNT close-in explosion conditions are calculated by numerical simulation methods and compared with empirical formulas and experimental results in the literature to verify. Furthermore, the numerical simulation method was used to evaluate the resistance of 300mm thick reinforced concrete slabs to close-in impacts of different mass TNT at a standoff distance of 0.4m.


2011 ◽  
Vol 230-232 ◽  
pp. 1221-1225 ◽  
Author(s):  
Xia Yu ◽  
Xu Yao Sun ◽  
Dan Ke Wei

Using the separation line technology, established a FE model of two-dimensional cutting process for AISI4340 steel and discussed some basic theory and pivotal questions associated with the simulation of cutting process including the Johnson-Cook material model, the contact model between tool and chip, criteria of chip separation and so on. In order to study the impact of tool rake angle on the chip morphology and the cutting forces, the high-speed cutting process for AISI 4340 steel was simulated based on ABAQUS software. Also, analyzed the influence of mesh azimuth on the chip morphology and its temperature distribution.


2011 ◽  
Vol 314-316 ◽  
pp. 401-404 ◽  
Author(s):  
Min Zhang ◽  
Chuan Zhen Huang ◽  
Guo Wen Chen ◽  
Yu Xi Jia

The extrudate swell of the polymer extrusion process was studied with the experiment and simulation method. The extrudate swell process was recorded by the high-speed photography apparatus. The swell rate at the different time was calculated. It is found that the extrudate swell rate increase at the first five seconds. The maximum swell rate is about 4.37%. The three-dimensional numerical simulation model of the experiment die path was founded. The extrusion process including the extrudate swell was simulated used the Finite Element Method. Such simulated results as the velocity vector, the shear rate profile and the end of the swell zone were analyzed. The extrudate swell end got by the simulation is similar with the experiment result.


2013 ◽  
Vol 376 ◽  
pp. 317-322
Author(s):  
Jun Zhang ◽  
Rong Zhong Liu ◽  
Rui Guo ◽  
Xiao Dong Ma

Aero-heating problem severely affects the performance of terminal-sensitive projectile (TSP) when projected out of the carrier capsule by the gunpowder gas at a high speed. In this paper, based on the typical ballistic data and airflow physical parameters at deceleration and despinning trajectory, the aerodynamic thermal characteristics of a TSP was simulated by Fluent, and the transient temperature distributions were obtained under the different flying conditions. Finally, we got stagnation temperatures by the numerical simulations which were similar to those by the engineering evaluation, and demonstrate the effectiveness of the simulation method. The results are valuable to the research of thermal protection and infrared signature of TSP.


Author(s):  
Aihong Zhao ◽  
Ian Owens Pericevic ◽  
Kennerly Digges ◽  
Cing-Dao Kan ◽  
Moji Moatamedi ◽  
...  

The human aorta consists of three layers: intima, media and adventitia from the inner to outer layer. Since aortic rupture of victims in vehicle crashes frequently occurs in the intima and the media, latent aortic injuries are difficult to detect at the crash scene or in the emergency room. It is necessary to develop a multi-layer aorta finite element (FE) model to identify and describe the potential mechanisms of injury in various impact modes. In this paper, a novel three-layer FE aortic model was created to study aortic ruptures under impact loading. The orthotropic material model [1] has been implemented into a user-defined material subroutine in the commercial dynamic finite element software LS-DYNA version 970 [2], which was adopted in the aorta FE model. The Arbitrary-Lagrangian Eulerian (ALE) approach was adopted to simulate the interaction between the fluid (blood) and the structure (aorta). Single element verifications for the user-defined subroutine were performed. The mechanical behaviors of aortic tissues under impact loading were simulated by the aorta FE model. The models successfully predicted the rupture of the layers separately. The results provide a basis for a more in-depth investigation of blunt traumatic aortic rupture (BTAR) in vehicle crashes.


2019 ◽  
Vol 10 (1) ◽  
pp. 62 ◽  
Author(s):  
Shubo Zhang ◽  
Gang Wang ◽  
Yujing Jiang ◽  
Xianlong WU ◽  
Genxiao Li ◽  
...  

Based on the underground jointed rock of the Huangdao water sealed oil depot in China, the shear failure mechanism of bolted jointed rock is studied through laboratory experiments and numerical simulation. Laboratory experiments are performed to explore the shear behavior of bolted jointed rock with different joint roughness. Our results show that using high strength bolts is beneficial to improving the shear strength of the jointed rock, but the high strength of bolts can also lead to the rock fracture, which should be avoided. For this particular project site, experimental results indicate that 15% elongation is the best. In addition, a new numerical simulation method with CZM (cohesive zone model) used for modeling the shearing process of bolted jointed rock is proposed. It can reasonably describe the characteristics of jointed rock as a discontinuous medium, and bolt as a continuous medium, that replicate well the shearing process. The numerical model is then verified by comparing the experiment results, and it can be effectively be applied to the simulation of joint shearing process. Finally, we use this simulation method to explore the shear failure mechanism of bolted joints, and find that the root cause of rock failure is the deformation mismatch between the bolt and the surrounding rock. The tensile stress between them eventually causes the rock to fracture near the bolt hole.


2013 ◽  
Vol 787 ◽  
pp. 485-489
Author(s):  
Fei Xu ◽  
Ze Tan ◽  
Ya Jie Shi

Engineered Material Arresting System (EMAS) is the specified equipment used to prevent aircraft from overrunning. Based on static compression and impact tests of the foam concrete, material model and parameters in the FEM simulation are determined. Then numerical simulations are performed on FAA(Federal Aviation Administration) aircraft arresting tests. The simplified aircraft arresting FEM model and corresponding simulation method are verified. The thickness effect of the arresting bed is studied.


Sign in / Sign up

Export Citation Format

Share Document