ANALYSIS OF TIMBER COLUMN-GROUND SILL JOINTS REINFORCED WITH IMPROVED ARAMID FIBER SHEETS

Author(s):  
Akari Yamaguchi ◽  
Xinyan Chen ◽  
Noriko Takiyama

High-performance aramid fiber sheets are a new class of composite materials made up of weaved polyamide fibers. In this study, the seismic performance and failure behavior of timber column-ground sill joints reinforced with aramid fiber sheets were investigated. In a past study, we conducted bending tests under cyclic loading for three column-ground sill specimens. After reinforcing the specimens with aramid fiber sheets, the joint strength improved but was dependent on the method of attaching the sheet. It was found that the compression zone of the aramid fiber-reinforced plastic layer broke at the joint boundary. In this paper, we proposed an improvement in the method of attaching the fiber sheet to the joint. On the compression zone at the boundary of the joint, resin was not pasted onto the aramid fiber, the fiber was not cured, and the plastic layer was not formed. Therefore, we could solve some problems and control the failure of column-ground sill joints.

Author(s):  
Noriko Takiyama ◽  
Akari Yamaguchi ◽  
Xinyan Chen ◽  
Sho Koike

We report the progress of an experimental study conducted to understand the seismic performance of a timber column–ground sill joint reinforced using an aramid fiber sheet, and to improve the deformation property of the reinforced joint. An aramid fiber sheet is a new material that weaves high-performance aramid fibers in one or two directions. In previous research, certain problems were found: (a) even when applying a similar reinforcement, the sheet did not necessarily demonstrate the same failure mode, and (b) when the sheet was peeled off in stretches, the joint is destroyed through brittleness. In this study, based on the preceding research, we proposed a new sheet-pasting method for an improvement in the deformation property, and conducted a bending test under cyclic loading for some column-ground sill joint specimens to verify the seismic performance and failure behavior. It was found that, by splitting the sheet, the problems of the preceding research are avoidable.


Author(s):  
Akari Yamaguchi ◽  
Xinyan Chen ◽  
Noriko Takiyama

High-performance aramid fiber sheets are a new class of composite materials composed of weaved polyamide fibers. This seismic performance and failure behavior of timber column–ground sill joints reinforced with aramid fiber sheets were investigated. We conducted bending tests under cyclic loading for three column– ground sill specimens. The maximum bending moments were estimated using a simple method and compared with the experimentally obtained moments. After reinforcement with aramid fiber sheets, joint strength improved but was dependent on the sheet-attaching form. Moreover, it is remarkable to break from peeling sheet. Further, the proposed sheet-attaching form (with widened crossing sheets) exhibited a higher restoring force than did the conventional form because of sheet is further away from the center of rotation.


Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 644
Author(s):  
Do-Yeong Kim ◽  
Boram Kim ◽  
Han-Seung Shin

The effect of cellulosic aerogel treatments used for adsorption of four polycyclic aromatic hydrocarbons (PAHs)—benzo[a]anthracene, chrysene, benzo[b]fluoranthene, and benzo[a]pyrene [BaP])—generated during the manufacture of sesame oil was evaluated. In this study, eulalia (Miscanthus sinensis var. purpurascens)-based cellulosic aerogel (adsorbent) was prepared and used high performance liquid chromatography with fluorescence detection for determination of PAHs in sesame oil. In addition, changes in the sesame oil quality parameters (acid value, peroxide value, color, and fatty acid composition) following cellulosic aerogel treatment were also evaluated. The four PAHs and their total levels decreased in sesame oil samples roasted under different conditions (p < 0.05) following treatment with cellulosic aerogel. In particular, highly carcinogenic BaP was not detected after treatment with cellulosic aerogel. Moreover, there were no noticeable quality changes in the quality parameters between treated and control samples. It was concluded that eulalia-based cellulosic aerogel proved suitable for the reduction of PAHs from sesame oil and can be used as an eco-friendly adsorbent.


2021 ◽  
Vol 170 ◽  
pp. 112529
Author(s):  
N. Cruz ◽  
A.J.N. Batista ◽  
J.M. Cardoso ◽  
B.B. Carvalho ◽  
P.F. Carvalho ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1399
Author(s):  
Karina Yévenes ◽  
Ekaterina Pokrant ◽  
Lina Trincado ◽  
Lisette Lapierre ◽  
Nicolás Galarce ◽  
...  

Tetracyclines, sulphonamides, and quinolones are families of antimicrobials (AMs) widely used in the poultry industry and can excrete up to 90% of AMs administrated, which accumulate in poultry litter. Worryingly, poultry litter is widely used as an agriculture fertilizer, contributing to the spread AMs residues in the environment. The aim of this research was to develop a method that could simultaneously identify and quantify three AMs families in poultry litter by high-performance liquid chromatography–tandem mass spectrometry (HPLC–MS/MS). Samples of AMs free poultry litter were used to validate the method according to 657/2002/EC and VICH GL49. Results indicate that limit of detection (LOD) ranged from 8.95 to 20.86 μg kg−1, while limits of quantitation (LOQ) values were between 26.85 and 62.58 µg kg−1 of tetracycline, 4-epi-tetracycline, oxytetracycline, 4-epi-oxytetracycline, enrofloxacin, ciprofloxacin, flumequine, sulfachloropyridazine, and sulfadiazine. Recoveries obtained ranged from 93 to 108%. The analysis of field samples obtained from seven commercial poultry flocks confirmed the adequacy of the method since it detected means concentrations ranging from 20 to 10,364 μg kg−1. This provides us an accurate and reliable tool to monitor AMs residues in poultry litter and control its use as agricultural fertilizer.


Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1382
Author(s):  
Xiaoying Deng ◽  
Huazhang Li ◽  
Mingcheng Zhu

Based on the idea of bisection method, a new structure of All-Digital Phased-Locked Loop (ADPLL) with fast-locking is proposed. The structure and locking method are different from the traditional ADPLLs. The Control Circuit consists of frequency compare module, mode-adjust module and control module, which is responsible for adjusting the frequency control word of digital-controlled-oscillator (DCO) by Bisection method according to the result of the frequency compare between reference clock and restructure clock. With a high frequency cascade structure, the DCO achieves wide tuning range and high resolution. The proposed ADPLL was designed in SMIC 180 nm CMOS process. The measured results show a lock range of 640-to-1920 MHz with a 40 MHz reference frequency. The ADPLL core occupies 0.04 mm2, and the power consumption is 29.48 mW, with a 1.8 V supply. The longest locking time is 23 reference cycles, 575 ns, at 1.92 GHz. When the ADPLL operates at 1.28 GHz–1.6 GHz, the locking time is the shortest, only 9 reference cycles, 225 ns. Compared with the recent high-performance ADPLLs, our design shows advantages of small area, short locking time, and wide tuning range.


2006 ◽  
Vol 55 (5) ◽  
pp. 1725-1733 ◽  
Author(s):  
P.G. Papageorgas ◽  
D. Maroulis ◽  
G. Anagnostopoulos ◽  
H. Albrecht ◽  
B. Wagner ◽  
...  

2014 ◽  
Vol 875-877 ◽  
pp. 2097-2106
Author(s):  
Rai Wung Park

The transit motion and the rotating motion have highly different effects in a technical systems and have almost nonlinear system behaviors. For the descriptions of their dynamical causes and effects on system, the physical information, which is concerned as a nonlinear mathematic model, has been used. But the corresponding equations are generally not easy to solve in complete form or their solutions are so complicated to see through the coherence. A common way to settle such a problem is to linearize system exactly in a state space or on a operating points with Taylor's series approximately. An advanced method to an approximation is a bilinear system that offers global separations principle. In this paper, an extended application of this theory is given in a modeling and control on the electro hydrostatic cylinder driver with both the transit and rotating motions for the keel system that mostly have not only advantage of high performance, small volume of building and weight but also high nonlinear behavior.


2021 ◽  
Author(s):  
Alessandro Ferraris ◽  
Davide De Cupis ◽  
Henrique de Carvalho Pinheiro ◽  
Alessandro Messana ◽  
Lorenzo Sisca ◽  
...  

2016 ◽  
Vol 106 (03) ◽  
pp. 125-130
Author(s):  
D. Hofbauer ◽  
J. Greitemann ◽  
M. Grammer ◽  
J. Kaufmann ◽  
G. Prof. Reinhart

Hochleistungswerkstoffe wurden bisher nur für Spezialanwendungen eingesetzt, da hohe Materialkosten und eine geringe Reife der Fertigungstechnologien die Anwendung in der Großserie erschwert haben. Um die grundlegende Eignung der Technologien unter Beachtung der Produktanforderungen zu ermitteln, präsentiert dieser Fachbeitrag eine Methodik für die systematische Bewertung, die am Beispiel der Großserienfertigung von Bauteilen aus Faser-Kunststoff-Verbundwerkstoffen (FKV) erläutert wird. &nbsp; The use of high-performance materials has so far been limited to special applications for reasons of high material costs and low maturity of manufacturing technologies. These facts avoided their use in mass production in the past. This paper presents a method for systematically evaluating technologies to determine their fundamental suitability for mass production. It is exemplified by large-scale series production of fiber-reinforced plastic components.


Sign in / Sign up

Export Citation Format

Share Document