scholarly journals ERYTHROCYTE OXIDATIVE STATUS AFTER MAXIMAL AEROBIC TEST IN WRESTLERS

2019 ◽  
Vol 19 (1) ◽  
pp. 15-21
Author(s):  
A Alexandrova ◽  
L Petrov ◽  
R Makaveev ◽  
E Tsvetanova ◽  
A Georgieva ◽  
...  

Aim. The aim of this study was to determine the changes in the erythrocyte oxidative status of the wrestlers after performing the maximal aerobic test, by registering in erythrocytes the levels of lipid peroxidation (LPO), total glutathione (tGSH) and activities of catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx). Materials and methods. A group of 12 healthy wrestlers conducted a treadmill maximal aerobic test, and venous blood samples were obtained before and immediately after the exercise. Erythrocytes were separated from plasma and used for spectrophotometric determination of LPO, tGSH and enzyme activities. Plasma was used for determination of hemoglobin concentration (Hb) as an index of hemolysis. Results. The performance of the maximal aerobic test resulted in a significant increase of Hb in blood plasma, a decrease of LPO, and no changes of the tGSH level in erythrocytes. In regards to antioxidant enzymes, our results showed an increase in the activity of GPx, while the CAT and SOD activity remain unchanged. Conclusions. It can be concluded that in active athletes, predominate erythrocytes that are more resistant to oxidative stress, because of the accelerated hemolysis induced by physical exercise, lead to the elimination of the old and oxidative modified cells.

2018 ◽  
Vol 46 (1) ◽  
Author(s):  
Nermin Isik ◽  
Ozlem Derinbay Ekici ◽  
Ceylan Ilhan ◽  
Devran Coskun

 Background: Theileriosis is a tick-borne disease caused by Theileria strains of the protozoan species. Buparvaquone is the mostly preferred drug in the treatment theileriosis, while it is safety in sheep, has not been detailed investigated. It has been hypothesized that buparvaquone may show side effects and these effects may be defined some parameters measured from blood in sheep when it is used at the recommended dose and duration. The aim of this research was to determine the effect of buparvaquone on the blood oxidative status, cardiac, hepatic and renal damage and bone marrow function markers.Materials, Methods & Results: In this study, ten adult (> 2 years) Akkaraman rams were used. Healthy rams were placed in paddocks, provided water ad libitum, and fed with appropriate rations during the experiment. Buparvaquone was ad­ministered at the dose of 2.5 mg/kg (IM) intramuscularly twice at 3-day intervals. Blood samples were obtained before (0. h, Control) and after drug administration at 0.25, 0.5, 1, 2, 3, 4 and 5 days. The blood samples were transferred to gel tubes, and the sera were removed (2000 g, 15 min). During the study, the heart rate, respiratory rate, and body temperature were measured at each sampling time. In addition, the animals were clinically observed. Plasma oxidative status mark­ers (Malondialdehyde, total antioxidant status, catalase, glutathione peroxidase, superoxide dismutase), serum cardiac (Troponin I, creatine kinase-MBmass, lactate dehydrogenase), hepatic (Alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, gamma glutamyltransferase, total protein, albumin, globulin) and renal (Creatinine, blood urea nitrogen) damage markers and hemogram values (white blood cell, red blood cell, platelet, hemogram, hematocrit) were measured. Buparvaquone caused statistically significantly (P < 0.05) increases in the troponin I and blood urea nitrogen levels and fluctuations in alkaline phosphatase activity, but there was no any statistically significance difference determined in the other parameters.Discussion: In this study, buparvaquone was administered two times at a dose of 2.5 mg/kg (IM) at 3-day intervals. Al­though the result was not statistically significant (P > 0.05), it was determined that buparvaquone gradually increased the levels of the main oxidative stress marker, MDA, by approximately 2.8 fold. CAT and GPX levels were also found to have decreased by 2.2 fold. Buparvaquone may cause lipid peroxidation by producing free radicals. Some other antiprotozoal drugs may affect the oxidative status and may increase MDA level and decrease SOD level. In this study, MDA, which is an indicator of lipid peroxidation in vivo, was used to partially detect developing lipid peroxidation. Changes in the levels of reduced GPX and CAT enzymes could be attributed to their use in mediating the hydrogen peroxide detoxification mechanisms. The absence of significant changes in the TAS levels in this study suggests that buparvaquone may partially induce oxidative stress by producing hydrogen peroxide, but no significant changes occurred in the oxidative stress level because of the high antioxidant capacity of sheep. In this study, buparvaquone caused a statistically significant increase (P < 0.05) in the level of Tn-I, which is a marker of specific cardiac damage (P < 0.05), whereas there was no statistically (P > 0.05) significant increase in CK-MBmass. Tn-I and CK-MB levels, which are used to define heart damage in humans, have been successfully used to determine heart damage in sheep. In this research study, the statistically significant increases in Tn-I but not CK-MBmass levels could be considered indicative of mild cardiac damage.Keywords: ram, buparvaquone, safety.


2012 ◽  
Vol 4 (2) ◽  
pp. 271-276 ◽  
Author(s):  
S Mukhopadhyay ◽  
J Dutta ◽  
R Raut ◽  
H Datta ◽  
A K Bhattacharyay

Objective: To compare oxidative stress between primary retinoblastoma and retinoblastoma with distant metastasis. Patients and methods: Forty consecutive patients presented with primary retinoblastoma and the same number of patients presented with distant metastasis, attending the outpatient department of our hospital between August 2002 and April 2005. All the patients with retinoblastoma underwent a standard metastasis workup and were subsequently categorized into two groups (without metastasis and with metastasis).Venous blood samples were drawn from each patient. After proper centrifugation, serum was collected and antioxidant enzymes and reactive oxygen species (ROS) were assayed. Main outcome measures: Serum collected from the patients was subjected to biochemical assay of the antioxidant enzymes (superoxide dismutase, catalase and peroxidise) and ROS to determine any difference in enzyme activity between the two groups. Results: Antioxidant levels were found to be less in the metastasis group as compared to the primary intraocular retinoblastoma group(p<0.05).Mean ROS activity was found to be increased in metastatic group (p<0.05). Conclusion: The decreased antioxidant enzymes level along with increased ROS activity in patients with metastatic retinoblastoma reflect increased oxidative stress as compared to primary intraocular retinoblastoma patients.DOI: http://dx.doi.org/10.3126/nepjoph.v4i2.6543 Nepal J Ophthalmol 2012; 4 (2): 271-276  


Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1807 ◽  
Author(s):  
Juste Baranauskaite ◽  
Ilona Sadauskiene ◽  
Arunas Liekis ◽  
Arturas Kasauskas ◽  
Robertas Lazauskas ◽  
...  

Aluminum accumulation, glutathione (GSH) and malondialdehyde (MDA) concentrations as well as catalase (CAT) and superoxide dismutase (SOD) activities were determined in erythrocytes and brain and liver homogenates of BALB/c mice treated with Al3+ (7.5 mg/kg/day (0.15 LD50) as AlCl3 (37.08 mg/kg/day), whereas HCl (30.41 mg/kg/day) was used as Cl− control, the treatments were performed for 21 days, i.p., in the presence and absence of rosmarinic acid (0.2805 mg/kg/day (0.05 LD50), 21 days, i.g.) or carvacrol (0.0405 mg/kg/day (0.05 LD50), 21 days, i.g.). The treatment with AlCl3 increased GSH concentration in erythrocytes only slightly and had no effect on brain and liver homogenates. Rosmarinic acid and carvacrol strongly increased GSH concentration in erythrocytes but decreased it in brain and liver homogenates. However, AlCl3 treatment led to Al accumulation in mice blood, brain, and liver and induced oxidative stress, assessed based on MDA concentration in the brain and liver. Both rosmarinic acid and carvacrol were able to counteract the negative Al effect by decreasing its accumulation and protecting tissues from lipid peroxidation. AlCl3 treatment increased CAT activity in mice brain and liver homogenates, whereas the administration of either rosmarinic acid or carvacrol alone or in combination with AlCl3 had no significant effect on CAT activity. SOD activity remained unchanged after all the treatments in our study. We propose that natural herbal phenolic compounds rosmarinic acid and carvacrol could be used to protect brain and liver against aluminum induced oxidative stress leading to lipid peroxidation.


2018 ◽  
Vol 38 (11) ◽  
pp. 2070-2079 ◽  
Author(s):  
Nayanna B.S. Fonseca ◽  
Jucélio S. Gameleira ◽  
Jerson M. Cavalcante ◽  
Francisco L.C. Oliveira ◽  
Clara S. Mori ◽  
...  

ABSTRACT: Blood transfusion is a therapeutic procedure of great importance for veterinary medicine, in spite of only few studies in the literature on hemotherapy in goats. We aimed to evaluate the biochemical, blood gas, oxidative stress and lipid peroxidation of goats submitted to homologous transfusion of fresh whole blood or stored for 15 and 35 days. Eighteen adult male goats were submitted to a single phlebotomy to remove 30% of the blood volume, and we transfused 20mL/kg of whole blood stored in CPDA-1 bags according to the experimental group, being: G0 composed goats who received fresh blood, G15 and G35 goats that received blood stored for 15 and 35 days, respectively. For the biochemical evaluation, blood gas, oxidative stress and lipid peroxidation, blood samples were collected at the following moments: before the induction of anemia (TC0); 6 hours after phlebotomy and before transfusion (TC1); 1, 6, 12, 24 and 96 hours after transfusion (T1, T6, T12, T24 and T96 respectively); 8, 16 and 32 days after transfusion (T8d, T16d and T32d respectively). Before transfusion, blood samples were also withdrawn from the bags for the same analyzes. Statistical analyzes were performed in the statistical program GRAPHPAD PRISM 5.0, adopting a significance level of 5%. The bags of blood stored for 15 and 35 days showed more biochemical changes, blood gas, oxidative stress and lipid peroxidation than fresh blood bags. As for the biochemical analysis, after the transfusion was observed an increase of the total protein, albumin, glucose and creatine kinase in the 3 groups, and elevation of total bilirubin, direct bilirubin, and urea in G15 and G35. The changes observed in the blood gas analysis had no clinical significance, as they were within the reference values for the species. The goats that received stored blood showed disorder in their antioxidant system through alteration of the SOD activity. In the analysis of lipid peroxidation no difference between the groups for the concentration of malondialdehyde was found. Thus, it can be concluded that transfusion of whole fresh stored blood in goats did not compromise the blood gases, lipid peroxidation and liver and renal functions of the transfused animals. In addition, the method was proved to be efficient to restore, among other components, the total protein and albumin. The transfusion, as performed in this study, proved to be safe for used in the clinical practice of goats.


Author(s):  
Tanvi D. Manat ◽  
Sandhya S. Chaudhary ◽  
Virendra Kumar Singh ◽  
Sanjay B. Patel ◽  
Kuldeep Kumar Tyagi

Present study was conducted to investigate postpartum oxidative stress in 20 Surti goats. Blood samples were collected on 0, 7th, 14th, 21st, 30th and 45th days postpartum and analysed for Superoxide Dismutase (SOD), Glutathione Peroxidase (GPx), lipid peroxidation (LPO), reduced Glutathione (GSH) and uric acid. SOD differed significantly between 0, 14th and 21st day postpartum. GPx was significantly low on 14th day and then increased significantly (P<0.01) up to 45th day. Significant (P<0.01) difference was observed between days except 0 and 21st. LPO increased significantly (P<0.01) from 0 to 14th day and then decreased non-significantly up to 45th day. Reduced glutathione was significantly (P<0.05) higher on 0 day. Uric acid was lowest on 0 day and highest on 45th day however they were non-significantly different on 7th, 14th, 30th and 45th day. It can be summarized that on 14th day post kidding, the values of SOD, GPx and GSH were lowest while LPO was highest. Uric acid was significantly (P<0.01) low on the day of kidding. Thus it may be concluded that in Surti goats the period from 0 day to 14th day postpartum is most stressful and critical care should be taken during this period. GPx, SOD along with LPO and GSH can be used as marker of stress during postpartum period.


2020 ◽  
pp. 23-27
Author(s):  
Helen Nwamba Ogochukwu ◽  
Cosmas Ezekaibeya Achikanu

The oxidative stress indices lipid peroxidation (LPO), superoxide dismutase (SOD) and catalase (CAT) in juvenile Clarias gariepinus (average weight 200.15 g) exposed to sub - lethal dose 2.40mg/L and 4.98mg/L of glyphosate was investigated over a period of days 1,5,10 and 15 in three replicates. The colorimetric analysis showed increase in lipid peroxidation from 4.55 ±2.14a1 to 12.12± 10.00a1at 2.40mg/L but remain the same at 4.98mg/L (4.55±2.14a1) compared with control (3.03±0.01a1 to 1.51±2.14b1) from day 1 to 15. The SOD activity decreased significantly with time and concentration compared with control. The Catalase activity at day 15 decreased to 0.17±0.05a1 in 2.40mg/L but further increased to 0.28±0.05b1 in 4.98mg/L compared to 0.28±0.02a1 catalase activity as control. The result suggests that glyphosate induce oxidative stress that may overwhelm the antioxidant system in juvenile catfish especially at higher concentrations with long exposure.


2020 ◽  
Vol 30 (Supplement_2) ◽  
Author(s):  
A Valado ◽  
S Fortes ◽  
M Morais ◽  
J Rosado ◽  
JP Figueiredo ◽  
...  

Abstract Introduction Oxidative stress is the imbalance between reactive species produced in the body during metabolic reactions and antioxidant agents that have the ability to neutralize or prevent the formation of these species. One of the effects of oxidative stress is the normal and physiological process of cell aging that arises from the accumulation of tissue damage caused by free radicals. Objectives To assess whether the activity of enzymes superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GR) are influenced by the hydrotherapy sessions. Methodology 37 subjects aged 60 years old and above, of both genders, were divided into two groups (experimental and control). The experimental group underwent 15 hydrotherapy sessions supervised by a physical therapist. Two peripheral venous blood samples were collected at two different times: T0, instant before the intervention and T1, instant after the last session. The activity of SOD, GPx and GR enzymes were determined, respectively, with the Ransod superoxide dismutase, Ransel glutathione peroxidase and glutathione reductase commercial kits, from Randox Laboratories Limited, United Kingdom. The assay was performed as described in the kits and the sample results were obtained by spectrophotometric reading. Results SOD activity at T1 tended to decrease slightly compared to T0 (1437.64 ± 593.46 vs 1421.41 ± 705.39 U/g Hb). At T1, there was a statistically significant increase in GPx activity (48.14 ± 17.22 vs 57.72 ± 19.99 U/g Hb) and in GR activity (78.44 ± 21.26 vs 100.18 ± 30.85 U/L). Regarding gender, both genders tended to have higher values of GPx and GR at T1. Conclusion According to the obtained results, we conclude that the practice of hydrotherapy presents as a positive stimulus in the antioxidant activity of aged individuals suggesting that a regular and moderate practice of exercise induces a higher quality of life.


2010 ◽  
Vol 67 (7) ◽  
pp. 573-578 ◽  
Author(s):  
Aleksandar Jokic ◽  
Nikola Sremcevic ◽  
Zeki Karagülle ◽  
Tatjana Pekmezovic ◽  
Vukosava Davidovic

Background/Aim. It is weel-known that sulphur baths and mud paks demonstrate beneficial effects on patients suffering from degenerative knee and hip osteoarthritis (OA) through the increased activity of protective antioxidant enzymes. The aim of this study was to assess lipid peroxidation level, i.e. malondialdehyde concetration, in individuals with knee and/or hip osteoarthritis (OA), as well as to determine the influence of sulphur baths and mud packs application on the activity of superoxide dismutase (SOD) and catalase (CAT) in order to minimize or eliminate excessive free radical species production (oxidative stress). Methods. Thirty one patiens with knee and/or hip OA of both sexes were included in the study. All OA patients received mud pack and sulphur bath for 20 minutes a day, for 6 consecutive days a week, over 3 weeks. Blood lipid peroxidation, ie malondialdehyde concentration, superoxide dismutase and catalase activity were measured spectrophotometrically, before, on day 5 during the treatment and at the end of spa cure. Healthy volunteers (n = 31) were the controls. Results. The sulphur baths and mud packs treatment of OA patients caused a significant decrease in plasma malondialdehyde concentration compared to the controls ( p < 0.001). The mean SOD activity before the terapy was 1 836.24 U/gHb, on day 5 it rose to 1 942.15 U/gHb and after the spa cure dropped to 1 745.98 U/gHb. Catalase activity before the therapy was 20.56 kU/gHb and at the end of the terapy decreased to 16.16 kU/gHb. The difference in catalase activity before and after the therapy was significant (p < 0.001), and also significant as compared to control (p < 0.001). At the end of the treatment significant increase of hemoglobin level and significant decrease of pain intensity were noticed. Conclusion. A combined 3-week treatment by sulphur bath and mud packs led to a significant decrease of lipid peroxidation in plasma, as well as pain intensity in the patients with OA. These changes were associated with changes in plasma activity of SOD and CAT and a significant increase of hemoglobin level suggesting their role in beneficial effect of spa therapy in the patients with OA.


2018 ◽  
Vol 46 (1) ◽  
pp. 7
Author(s):  
Nermin Isik ◽  
Ozlem Derinbay Ekici ◽  
Ceylan Ilhan ◽  
Devran Coskun

Background: Theileriosis is a tick-borne disease caused by Theileria strains of the protozoan species. Buparvaquone is the mostly preferred drug in the treatment theileriosis, while it is safety in sheep, has not been detailed investigated. It has been hypothesized that buparvaquone may show side effects and these effects may be defined some parameters measured from blood in sheep when it is used at the recommended dose and duration. The aim of this research was to determine the effect of buparvaquone on the blood oxidative status, cardiac, hepatic and renal damage and bone marrow function markers.Materials, Methods & Results: In this study, ten adult (> 2 years) Akkaraman rams were used. Healthy rams were placed in paddocks, provided water ad libitum, and fed with appropriate rations during the experiment. Buparvaquone was administered at the dose of 2.5 mg/kg (IM) intramuscularly twice at 3-day intervals. Blood samples were obtained before (0. h, Control) and after drug administration at 0.25, 0.5, 1, 2, 3, 4 and 5 days. The blood samples were transferred to gel tubes, and the sera were removed (2000 g, 15 min). During the study, the heart rate, respiratory rate, and body temperature were measured at each sampling time. In addition, the animals were clinically observed. Plasma oxidative status markers (Malondialdehyde, total antioxidant status, catalase, glutathione peroxidase, superoxide dismutase), serum cardiac (Troponin I, creatine kinase-MBmass, lactate dehydrogenase), hepatic (Alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, gamma glutamyltransferase, total protein, albumin, globulin) and renal (Creatinine, blood urea nitrogen) damage markers and hemogram values (white blood cell, red blood cell, platelet, hemogram, hematocrit) were measured. Buparvaquone caused statistically significantly (P < 0.05) increases in the troponin I and blood urea nitrogen levels and fluctuations in alkaline phosphatase activity, but there was no any statistically significance difference determined in the other parameters.Discussion: In this study, buparvaquone was administered two times at a dose of 2.5 mg/kg (IM) at 3-day intervals. Although the result was not statistically significant (P > 0.05), it was determined that buparvaquone gradually increased the levels of the main oxidative stress marker, MDA, by approximately 2.8 fold. CAT and GPX levels were also found to have decreased by 2.2 fold. Buparvaquone may cause lipid peroxidation by producing free radicals. Some other antiprotozoal drugs may affect the oxidative status and may increase MDA level and decrease SOD level. In this study, MDA, which is an indicator of lipid peroxidation in vivo, was used to partially detect developing lipid peroxidation. Changes in the levels of reduced GPX and CAT enzymes could be attributed to their use in mediating the hydrogen peroxide detoxification mechanisms. The absence of significant changes in the TAS levels in this study suggests that buparvaquone may partially induce oxidative stress by producing hydrogen peroxide, but no significant changes occurred in the oxidative stress level because of the high antioxidant capacity of sheep. In this study, buparvaquone caused a statistically significant increase (P < 0.05) in the level of Tn-I, which is a marker of specific cardiac damage (P < 0.05), whereas there was no statistically (P > 0.05) significant increase in CK-MBmass. Tn-I and CK-MB levels, which are used to define heart damage in humans, have been successfully used to determine heart damage in sheep. In this research study, the statistically significant increases in Tn-I but not CK-MBmass levels could be considered indicative of mild cardiac damage.


2016 ◽  
Vol 52 (2) ◽  
pp. 101-106
Author(s):  
Marta Pawłowska ◽  
Celestyna Mila-Kierzenkowska ◽  
Agnieszka Kwiatkowska ◽  
Jarosław Paprocki ◽  
Paweł Sutkowy ◽  
...  

Reactive oxygen species (ROS) are essential for proper functioning of the body. It is important to strike a balance between the production of ROS and their removal by the action of the antioxidant system. The deterioration of this balance may lead to oxidative stress, which causes damage to cell components of all – of lipids, proteins and DNA. Lipid peroxidation is a chain and free-radical process of lipid oxidation, in the course of which are involved ROS. The lipid peroxidation may play an important role in the pathogenesis of psoriasis. The aim of the study was to determine the concentration of thiobarbituric acid reactive substances, malondialdehyde and conjugated dienes, and the activity of superoxide dismutase in patients with psoriasis. Material and methods: The study group consisted of 12 women and 24 men with psoriasis – patients of the Department of Dermatology, Sexually Transmitted Infections and Immunodermatology CM UMK. The control group consisted of 16 healthy volunteers. The material for the study was venous blood. The concentration of TBARS and CD was determined in plasma and erythrocytes. The concentration of MDA was determined in plasma and SOD activity in the erythrocytes. Results: Statistically significantly higher concentration of MDA and statistically significantly higher concentration of TBARS was revaled in patients with psoriasis as compared to control group. There were no statistically significant differences in plasma concentrations of CD among patients with psoriasis and control group. In erythrocytes of patients concentration of CD was twice as high. There were no statistically significant differences in the activity of SOD between the patient group and the control group. Conclusions: The most important product of lipid peroxidation responsible for the formation of psoriatic lesions is MDA. Lack of changes in the concentration of the primary products of lipid peroxidation, with significant changes in the concentration of secondary products of the process in blood of studied subjects can provide a significant degree of severity of damage to the cells.


Sign in / Sign up

Export Citation Format

Share Document