scholarly journals Toxic Effect of Glyphosate-Pesticide on Lipid Peroxidation Superoxide Dismutase and Catalase of Clarias Gariepinus

2020 ◽  
pp. 23-27
Author(s):  
Helen Nwamba Ogochukwu ◽  
Cosmas Ezekaibeya Achikanu

The oxidative stress indices lipid peroxidation (LPO), superoxide dismutase (SOD) and catalase (CAT) in juvenile Clarias gariepinus (average weight 200.15 g) exposed to sub - lethal dose 2.40mg/L and 4.98mg/L of glyphosate was investigated over a period of days 1,5,10 and 15 in three replicates. The colorimetric analysis showed increase in lipid peroxidation from 4.55 ±2.14a1 to 12.12± 10.00a1at 2.40mg/L but remain the same at 4.98mg/L (4.55±2.14a1) compared with control (3.03±0.01a1 to 1.51±2.14b1) from day 1 to 15. The SOD activity decreased significantly with time and concentration compared with control. The Catalase activity at day 15 decreased to 0.17±0.05a1 in 2.40mg/L but further increased to 0.28±0.05b1 in 4.98mg/L compared to 0.28±0.02a1 catalase activity as control. The result suggests that glyphosate induce oxidative stress that may overwhelm the antioxidant system in juvenile catfish especially at higher concentrations with long exposure.

2010 ◽  
Vol 67 (7) ◽  
pp. 573-578 ◽  
Author(s):  
Aleksandar Jokic ◽  
Nikola Sremcevic ◽  
Zeki Karagülle ◽  
Tatjana Pekmezovic ◽  
Vukosava Davidovic

Background/Aim. It is weel-known that sulphur baths and mud paks demonstrate beneficial effects on patients suffering from degenerative knee and hip osteoarthritis (OA) through the increased activity of protective antioxidant enzymes. The aim of this study was to assess lipid peroxidation level, i.e. malondialdehyde concetration, in individuals with knee and/or hip osteoarthritis (OA), as well as to determine the influence of sulphur baths and mud packs application on the activity of superoxide dismutase (SOD) and catalase (CAT) in order to minimize or eliminate excessive free radical species production (oxidative stress). Methods. Thirty one patiens with knee and/or hip OA of both sexes were included in the study. All OA patients received mud pack and sulphur bath for 20 minutes a day, for 6 consecutive days a week, over 3 weeks. Blood lipid peroxidation, ie malondialdehyde concentration, superoxide dismutase and catalase activity were measured spectrophotometrically, before, on day 5 during the treatment and at the end of spa cure. Healthy volunteers (n = 31) were the controls. Results. The sulphur baths and mud packs treatment of OA patients caused a significant decrease in plasma malondialdehyde concentration compared to the controls ( p < 0.001). The mean SOD activity before the terapy was 1 836.24 U/gHb, on day 5 it rose to 1 942.15 U/gHb and after the spa cure dropped to 1 745.98 U/gHb. Catalase activity before the therapy was 20.56 kU/gHb and at the end of the terapy decreased to 16.16 kU/gHb. The difference in catalase activity before and after the therapy was significant (p < 0.001), and also significant as compared to control (p < 0.001). At the end of the treatment significant increase of hemoglobin level and significant decrease of pain intensity were noticed. Conclusion. A combined 3-week treatment by sulphur bath and mud packs led to a significant decrease of lipid peroxidation in plasma, as well as pain intensity in the patients with OA. These changes were associated with changes in plasma activity of SOD and CAT and a significant increase of hemoglobin level suggesting their role in beneficial effect of spa therapy in the patients with OA.


2001 ◽  
Vol 2 (3) ◽  
pp. 211-216 ◽  
Author(s):  
Robert M. Strother ◽  
Tonya G. Thomas ◽  
Mary Otsyula ◽  
Ruth A. Sanders ◽  
John B. Watkins III

Rats fed a galactose-rich diet have been used for several years as a model for diabetes to study, particularly in the eye, the effects of excess blood hexoses. This study sought to determine the utility of galactosemia as a model for oxidative stress in extraocular tissues by examining biomarkers of oxidative stress in galactose-fed rats and experimentally-induced diabetic rats. Sprague-Dawley rats were divided into four groups: experimental control; streptozotocin-induced diabetic; insulin-treated diabetic; and galactose-fed. The rats were maintained on these regimens for 30 days, at which point the activities of catalase, glutathione peroxidase, glutathione reductase, and superoxide dismutase, as well as levels of lipid peroxidation and reduced and oxidized glutathione were determined in heart, liver, and kidney. This study indicates that while there are some similarities between galactosemic and diabetic rats in these measured indices of oxidative stress (hepatic catalase activity levels and hepatic and renal levels of oxidized glutathione in both diabetic and galactosemic rats were significantly decreased when compared to normal), overall the galactosemic rat model is not closely parallel to the diabetic rat model in extra-ocular tissues. In addition, several effects of diabetes (increased hepatic glutathione peroxidase activity, increased superoxide dismutase activity in kidney and heart, decreased renal and increased cardiac catalase activity) were not mimicked in galactosemic rats, and glutathione concentration in both liver and heart was affected in opposite ways in diabetic rats and galactose- fed rats. Insulin treatment reversed/prevented the activity changes in renal and cardiac superoxide dismutase, renal and cardiac catalase, and hepatic glutathione peroxidase as well as the hepatic changes in lipid peroxidation and reduced and oxidized glutathione, and the increase in cardiac glutathione. Thus, prudence should be exercised in the use of experimentally galactosemic rats as a model for diabetes until the correspondence of the models has been more fully characterized.


Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1807 ◽  
Author(s):  
Juste Baranauskaite ◽  
Ilona Sadauskiene ◽  
Arunas Liekis ◽  
Arturas Kasauskas ◽  
Robertas Lazauskas ◽  
...  

Aluminum accumulation, glutathione (GSH) and malondialdehyde (MDA) concentrations as well as catalase (CAT) and superoxide dismutase (SOD) activities were determined in erythrocytes and brain and liver homogenates of BALB/c mice treated with Al3+ (7.5 mg/kg/day (0.15 LD50) as AlCl3 (37.08 mg/kg/day), whereas HCl (30.41 mg/kg/day) was used as Cl− control, the treatments were performed for 21 days, i.p., in the presence and absence of rosmarinic acid (0.2805 mg/kg/day (0.05 LD50), 21 days, i.g.) or carvacrol (0.0405 mg/kg/day (0.05 LD50), 21 days, i.g.). The treatment with AlCl3 increased GSH concentration in erythrocytes only slightly and had no effect on brain and liver homogenates. Rosmarinic acid and carvacrol strongly increased GSH concentration in erythrocytes but decreased it in brain and liver homogenates. However, AlCl3 treatment led to Al accumulation in mice blood, brain, and liver and induced oxidative stress, assessed based on MDA concentration in the brain and liver. Both rosmarinic acid and carvacrol were able to counteract the negative Al effect by decreasing its accumulation and protecting tissues from lipid peroxidation. AlCl3 treatment increased CAT activity in mice brain and liver homogenates, whereas the administration of either rosmarinic acid or carvacrol alone or in combination with AlCl3 had no significant effect on CAT activity. SOD activity remained unchanged after all the treatments in our study. We propose that natural herbal phenolic compounds rosmarinic acid and carvacrol could be used to protect brain and liver against aluminum induced oxidative stress leading to lipid peroxidation.


Author(s):  
Mina Adampourezare ◽  
Parisa Sistani ◽  
Homeira Hatami Nemati

Introduction: Diazinon (DZN) administration produces lipid peroxidation as an indicator of oxidative stress in the brain. Some medicinal plants such as Dorema glabrum has antioxidant properties, so can be used as an antioxidant that may protect neurons from oxidative stress. The aim of present study was to investigate the effect of D. glabrum against DZN-induced oxidative stress in hippocampus. Methods: Twenty-four adult male Wistar rats were used in this study. The rats randomly were divided into four groups including a control group, and two groups received different doses of D. glabrum (40 and 80 mg/kg) as pre-treatment for 21 days with DZN (100 mg/Kg) that was injected intraperitoneally (ip) in last day of D. glabrum usage, and one group received only DZN. Thiobarbituric acid reactive substances (TBARS), which are the indicators of lipid peroxidation, and the activities of antioxidant enzymes (glutathione peroxidase, superoxide dismutase and catalase) were determined in the ratsʼ hippocampus. Results: Administration of DZN significantly increased TBARS levels and superoxide dismutase activity and decreased glutathione peroxidase activity but there were no significant changes in catalase activity in the hippocampus. Combined D. glabrum and DZN treatment, caused a significant increase in glutathione peroxidase, a significant decrease of TBARS and a significant decrease in superoxide dismutase and again no significant changes in catalase activity in the rats’ hippocampus when compared to the rats treated with DZN. Conclusion: Our study demonstrated that D. glabrum had an amelioratory effect on oxidative stress induced by DZN.


2015 ◽  
Vol 9 (1) ◽  
pp. 78-82 ◽  
Author(s):  
Gustavo Lenci Marques ◽  
Francisco Filipak Neto ◽  
Ciro Alberto de Oliveira Ribeiro ◽  
Samuel Liebel ◽  
Rogério de Fraga ◽  
...  

Introduction: Several theories have been proposed to explain the cause of ‘aging’; however, the factors that affect this complex process are still poorly understood. Of these theories, the accumulation of oxidative damage over time is among the most accepted. Particularly, the heart is one of the most affected organs by oxidative stress. The current study, therefore, aimed to investigate oxidative stress markers in myocardial tissue of rats at different ages.Methods: Seventy-two rats were distributed into 6 groups of 12 animals each and maintained for 3, 6, 9, 12, 18 and 24 months. After euthanasia, the heart was removed and the levels of non-protein thiols, lipid peroxidation, and protein carbonylation, as well as superoxide dismutase and catalase activities were determined.Results:Superoxide dismutase, catalase activity and lipid peroxidation were reduced in the older groups of animals, when compared with the younger group. However, protein carbonylation showed an increase in the 12-month group followed by a decrease in the older groups. In addition, the levels of non-protein thiols were increased in the 12-month group and not detected in the older groups.Conclusion:Our data showed that oxidative stress is not associated with aging in the heart. However, an increase in non-protein thiols may be an important factor that compensates for the decrease of superoxide dismutase and catalase activity in the oldest rats, to maintain appropriate antioxidant defenses against oxidative insults.


2019 ◽  
Vol 19 (1) ◽  
pp. 15-21
Author(s):  
A Alexandrova ◽  
L Petrov ◽  
R Makaveev ◽  
E Tsvetanova ◽  
A Georgieva ◽  
...  

Aim. The aim of this study was to determine the changes in the erythrocyte oxidative status of the wrestlers after performing the maximal aerobic test, by registering in erythrocytes the levels of lipid peroxidation (LPO), total glutathione (tGSH) and activities of catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx). Materials and methods. A group of 12 healthy wrestlers conducted a treadmill maximal aerobic test, and venous blood samples were obtained before and immediately after the exercise. Erythrocytes were separated from plasma and used for spectrophotometric determination of LPO, tGSH and enzyme activities. Plasma was used for determination of hemoglobin concentration (Hb) as an index of hemolysis. Results. The performance of the maximal aerobic test resulted in a significant increase of Hb in blood plasma, a decrease of LPO, and no changes of the tGSH level in erythrocytes. In regards to antioxidant enzymes, our results showed an increase in the activity of GPx, while the CAT and SOD activity remain unchanged. Conclusions. It can be concluded that in active athletes, predominate erythrocytes that are more resistant to oxidative stress, because of the accelerated hemolysis induced by physical exercise, lead to the elimination of the old and oxidative modified cells.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Manuel B. Braga-Neto ◽  
Deiziane V. S. Costa ◽  
Dulciene M. M. Queiroz ◽  
Felipe S. Maciel ◽  
Michelle S. de Oliveira ◽  
...  

Background and Aims. First-degree relatives of gastric cancer patients are at increased risk of developing gastric cancer. Increased oxidative stress, including lipid peroxidation, has been associated with gastric carcinogenesis. Whether first-degree relatives of gastric cancer patients have increased oxidative stress remains unknown. We aimed to compare oxidative stress in patients with gastric cancer, their first-degree relatives, and dyspeptic controls. Methods. A total of 155 patients undergoing upper endoscopy were prospectively enrolled, including 50 with gastric cancer, 49 first-degree relatives of gastric cancer patients, and 56 controls. Serum concentrations of malondialdehyde (MDA) and glutathione) and activities of superoxide dismutase (SOD) and catalase were measured. Multivariate analysis adjusting for sex, age, smoking status, and alcohol consumption was performed. Results. Lipid peroxidation, as measured by concentration of MDA (nmol/mL), was higher ( p = 0.04 ), and glutathione levels were lower ( p < 0.001 ) in the gastric cancer group compared to controls. There was no difference in the catalase activity among the groups. There was no difference in glutathione and MDA concentration or catalase activity between the different stages of gastric cancer based on the TNM classification. Relatives of gastric cancer patients had higher glutathione concentration (μmol/mL) compared to gastric cancer patients (262.5 vs. 144.6; p = 0.018 ), while there was no difference in MDA concentration. Catalase and superoxide dismutase activity were lower in the gastric cancer group (3.82 vs. 0.91; p < 0.001 and 1.04 vs. 0.6; p < 0.001 ) compared to their first-degree relatives. Interestingly, MDA concentration in the first-degree relative group was higher than in the control group (7.9 vs. 5.1; p = 0.03 ). Conclusions. In this study, similarly to gastric cancer patients, their first-degree relatives were found to have increased oxidative stress compared to controls. Further studies are warranted to validate this observation and to better understand the role of oxidative stress as a possible biomarker in this population.


2018 ◽  
Vol 58 (10) ◽  
pp. 1837 ◽  
Author(s):  
S. Kamran Azad ◽  
F. Shariatmadari ◽  
M. A. Karimi Torshizi ◽  
Hamed Ahmadi

The present experiment was conducted to investigate the effect of feeding different concentrations and the source of zinc (Zn) on the performance, tissue mineral status, superoxide dismutase (SOD) enzyme activity and meat quality in 0–4-week-old broiler chicks. Dietary treatments included the corn–soybean meal-based diet (control) and the basal diet supplemented with Zn at 20, 50 or 80 mg/kg, added as ZnSO4, Zn-methionine or Zn-enriched yeast. The results showed that birds fed Zn-supplemented diets had higher average weight gain and average feed intake than did birds fed the control diet (P < 0.01). At the end of the experiment, the Zn deposition in pancreas, liver and tibia increased (P < 0.01), regardless of the source, in response to increasing dietary Zn concentrations, whereas plasma Zn status was significantly increased by the highest Zn supplementation level. The main effect of Zn supplementation level was significant for the activities of Cu and/or Zn SOD in the liver and pancreas (P < 0.01). As broiler given 50 mg Zn had higher tissue SOD activity than did broilers fed the other treatment diets. Furthermore, Zn supplementation at up to 50 mg/kg significantly increased (P < 0.01) Zn accumulation and SOD activity and decreased lipid peroxidation in muscles around the femur bone. Results from the present study demonstrated that supplementation with 50 mg Zn may be sufficient for normal broiler growth to 28 days of age and the dietary inclusion of organic Zn could be utilised more effectively than that of inorganic sources.


Author(s):  
Kiptiyah Kiptiyah ◽  
Widodo Widodo ◽  
Gatot Ciptadi ◽  
Aulanni’am Aulanni’Am ◽  
Mohammad A. Widodo ◽  
...  

AbstractBackgroundWe investigated whether 10-gingerol is able to induce oxidative stress in cumulus cells.MethodsFor the in-vitro research, we used a cumulus cell culture in M199, containing 10-gingerol in various concentrations (0, 12, 16, and 20 µM), and detected oxidative stress through superoxide dismutase (SOD) activity and malondialdehyde (MDA) concentrations, with incubation periods of 24, 48, 72, and 96 h. The obtained results were confirmed by in-silico studies.ResultsThe in-vitro data revealed that SOD activity and MDA concentration increased with increasing incubation periods: SOD activity at 0 µM (1.39 ± 0.24i), 12 µM (16.42 ± 0.35ab), 16 µM (17.28 ± 0.55ab), 20 µM (17.81 ± 0.12a), with a contribution of 71.1%. MDA concentration at 0 µM (17.82 ± 1.39 l), 12 µM (72.99 ± 0.31c), 16 µM (79.77 ± 4.19b), 20 µM (85.07 ± 2.57a), with a contribution of 73.1%. Based on this, the in-silico data uncovered that 10˗gingerol induces oxidative stress in cumulus cells by inhibiting HTR1A functions and inactivating GSK3B and AKT˗1.Conclusions10-gingerol induces oxidative stress in cumulus cells through enhancing SOD activity and MDA concentration by inhibiting HTR1A functions and inactivating GSK3B and AKT˗1.


2013 ◽  
Vol 64 (4) ◽  
pp. 553-559 ◽  
Author(s):  
Seyed Fazel Nabavi ◽  
Solomon Habtemariam ◽  
Antoni Sureda ◽  
Akbar Hajizadeh Moghaddam ◽  
Maria Daglia ◽  
...  

Abstract Gallic acid has been identified as an antioxidant component of the edible and medicinal plant Peltiphyllum peltatum. The present study examined its potential protective role against sodium fluoride (NaF)-induced oxidative stress in rat erythrocytes. Oxidative stress was induced by NaF administration through drinking water (1030.675 mg m-3 for one week). Gallic acid at 10 mg kg-1 and 20 mg kg-1 and vitamin C for positive controls (10 mg kg-1) were administered daily intraperitoneally for one week prior to NaF administration. Thiobarbituric acid reactive substances, antioxidant enzyme activities (superoxide dismutase and catalase), and the level of reduced glutathione were evaluated in rat erythrocytes. Lipid peroxidation in NaF-exposed rats significantly increased (by 88.8 %) when compared to the control group (p<0.05). Pre-treatment with gallic acid suppressed lipid peroxidation in erythrocytes in a dose-dependent manner. Catalase and superoxide dismutase enzyme activities and glutathione levels were reduced by NaF intoxication by 54.4 %, 63.69 %, and 42 % (p<0.001; vs. untreated control group), respectively. Pre-treatment with gallic acid or vitamin C significantly attenuated the deleterious effects. Gallic acid isolated from Peltiphyllum peltatum and vitamin C mitigated the NaF-induced oxidative stress in rat erythrocytes.


Sign in / Sign up

Export Citation Format

Share Document